CAST

Theopisti Dafni Universidad de Zaragoza on behalf of the CAST Collaboration 7th Axion Workshop ,26 June-01 July 2011, Mykonos

Outline

CAST Physics The experiment Latest results The future: immediate and long-term Conclusions

CERN Axion Solar Telescope: QCD Axions or Axion Like Particles (ALPs)

CAST Physics

Signal: excess of x-rays during alignment over background

Production: Primakoff effect Thermal photons interacting with solar nuclei produce Axions.

Differential axion flux on Earth

Detection (Sikivie 1983) Inverse Primakoff: axion interacting with a very strong <u>magnetic field converts</u> to a photon

Expected number of Photons:

$$N_{\gamma} = \int \frac{d\Phi_a}{dE_a} \cdot P_{a \to \gamma} \cdot S \cdot t \cdot dE_a$$

Two consecutive gas injections

Conversion Probability in gas (In vacuum m_y = 0, Γ =0) $P_{a \to \gamma} = \left(\frac{Bg_{a\gamma}}{2}\right)^2 \frac{1}{q^2 + \Gamma^2/4} \left[1 + e^{-\Gamma L/2} - 2e^{-\Gamma L/2} \cos(qL)\right]$

L= magnet length, Γ =absorption coefficient

In CAST phase I (vacuum), coherence was lost for $m_a > 0.02 \text{ eV}$. With the presence of a buffer gas it can be restored

for a narrow mass range:

$$qL < \pi \Rightarrow \sqrt{m_{\gamma}^2 - \frac{2\pi E_a}{L}} < m_a < \sqrt{m_{\gamma}^2 + \frac{2\pi E_a}{L}}$$

where

$$m_{\gamma}(eV) = \sqrt{\frac{4\pi\alpha N_e}{m_e}} \approx 28.9 \sqrt{\frac{Z}{A}\rho} \approx \sqrt{0.02 \cdot \frac{P(mbar)}{T(K)}}$$

CAST

Decommissioned prototype LHC dipole magnet. Magnetic field: **B=9 T** Length: **L=9.26 m**

Rotating platform (Vertical: ±8°, Horizontal: ±40°) 2x90 min solar tracking/day Sunrise: X-ray Focusing Device coupled to a CCD + 1 Micromegas Sunset: 2 Micromegas

CAST Physics Program

✓ CAST Phase I, Vacuum

m_a<0.02eV
Completed, (2003-2004)
PRL94(2005)121301
JCAP04(2007)020

✓ CAST Phase II, ⁴He

 P< 13.4mbar (1.8K), 160steps
 0.02<m_a<0.39eV
 Completed(2005-2006)
 JCAP02(2009)008

✓ CAST Phase II, ³He

•P< 120 mbar (1.8K) Da
 •0.39<m_a<1.16eV
 •Started in 2008
 •Will finish in 2011
 Publication submitted to PRL *Preprint:* 1106.3919

Parallel searches:

High Energy Axions: Data taking with a HE calorimeter JCAP 1003:032,2010
14.4 keV Axions: TPC data JCAP 0912:002,2009
Low Energy (visible) Axions: Data taking with a PMT/APD arXiv: 0809.4581

CAST detectors, Phase I & Phase II-⁴He

unshielded MICROMEGAS

	Typical Rates	
ТРС	85 counts/h (2-12 keV)	
MM	25 counts/h (2-10 keV)	
CCD	0.18 counts/h (1-7 keV)	

CAST, Theopisti Dafni (UNIZAR), 7th Patras Workshop, Mykonos 2011

New J. Phys. 9 (2007) 169

CAST detectors, Phase II-³He

New generation Micromegas

X-ray telescope + CCD

detectors

Sunrise

	Typical Rates
MM	3 cts/h (2-10 keV)
CCD	0.18 cts/h (1-7 keV)

Sunset detectors (2 new Micromegas)

CAST detectors, Phase II-3He

New generation Micromegas

X-ray telescope + CCD

	Typical Rates
MM	3 cts/h (2-10 keV)
CCD	0.18 cts/h (1-7 keV)

Sunset detectors (2 new Micromegas)

CAST, Theopisti Dafni (UNIZAR), 7th Patras Workshop, Mykonos 2011

detectors

Sunrise

X-ray telescope + CCD system

X-ray focusing device

- Wolter-I-type telescope (Prototype of ABRIXAS mission)
- 27 nested, gold-coated mirror shells
- Only one sector of telescope illuminated at CAST

pn-CCD (Prototype of XMM-Newton mission)

- Very good spatial and energy resolution
- Simultaneous measurement of signal and background

CCD detector

S/B improvement of ~150!

Telescope system

Microbulk Micromegas

Sunset:2 microbulks

Sunrise: 1 microbulk

Low intrinsic radioactivity Light mass, clean materials Signal topology, offline analysis 2D readout pattern, Time information Shielding archeological lead, inner Cu, N₂ flushing. potential for very-low background rates Typical new rate: <2 c/h

Background Level history at CAST

Working with a buffer gas

$$m_{\gamma}(eV) = \sqrt{\frac{4\pi\alpha N_{e}}{m_{e}}} \approx 28.9 \sqrt{\frac{Z}{A}\rho} \approx \sqrt{0.02 \cdot \frac{P(mbar)}{T(K)}}$$

Precise knowledge and **reproducibility** of each pressure setting is essential Gas **density homogeneity** along the magnet bore during tracking is critical To face that situation we:

Measure precisely the amount of gas ejected into the magnet!

Several **temperature and pressure sensors** are placed in several points of the magnet and the gas system

Extensive simulations for a most detailed model of the system under the different configurations •A series of Finite Element Analysis (ANSYS) with the sensors' data as bounding conditions was started (Static case, magnet movement)

•An analytic calculation approach

Geometry parameterization

Understanding ³He

What two consecutive steps-gas injections actually look like

Understanding ³He

A key point : ³He above some density is not an ideal gas (Van der Waals forces) Knowledge of gas density / setting reproducibility possible

Variation During tracking, but gas density still homogeneous

Preliminary ³He results

First results from the ³He phase

Axion mass 0.39 - 0.65 eVexcluded down to $\sim 2-2.5 \ge 10^{-10} \text{ GeV}^{-1}$

Publication submitted to PRL: Preprint: 1106.3919

The immediate to mid-term future

Re-visit ⁴He and vacuum phases Exotica:

Paraphotons Chameleons Detectors for Low energy axions A possibility: Relic axions

Revisit vacuum phase

CAST phase I limit determined by X-Ray telescope

Now, 3 high performance mibrobulk detectors

Modest improvement with normal background levels

12 months with existing micromegas

Other possibilities in vacuum...

More options

Paraphotons

'hidden sector' photons are thought to be massive, although very light in the sub-eV range, and able to kinetically mix with the standard photon:

 oscillations between photon - hidden sector photon
 Hidden photons produced in the Sun could be detected by the inverse
 conversion in a Helioscope like CAST.

No magnetic field needed. CAST in a vacuum phase, off-pointing...

Solar Chameleons

Chameleons are DE candidates:

could explain the acceleration of the Universe. Created in a strong magnetic field via the Primakoff effect, e.g. in the Sun Reconverted into x-rays inside the CAST magnet. Spectrum peaks at much lower energies than axions.

Both require detectors with low background and low Energy Threshold

More options

1:

rse

Several talks

tomorrow

afternoon

light in the

Paraphotons

'hidden sector' photons are thought to be massive sub-eV range, and able to kinetically mix wi oscillations between photon - hidden se Hidden photons produced in the Sun could b conversion in a Helioscope like CAST.

No magnetic field needed. CAST in a vacuum off-pointing...

Solar Chameleons

Chameleons are DE candidates:

could explain the acceleration of the Universe Created in a strong magnetic field via the Primak effect, e.g. in the Sun Reconverted into x-rays inside the CAST magnet. Spectrum peaks at much lower energies than axion

Non – resonant Spectrun Several talks on thursday

Both require detectors with low background and low Energy Threshold

Detector Development

Detector background level plays an important role for the sensitivity reached. For the parallel searches, Low Thresholds are another requirement.

CAST groups in R&D towards such detectors:

> Development of a Frame store CCD attached to the Telescope

Studies with Microbulk micromegas : Adjust operation parameters (gas, pressure) Develop transparent windows

Studies with Transition Edge Sensors (TDS): Very low background but Very small area, cryogenic operation Prototype FS CCD

TES array

Relic axions?

Insert a dielectric waveguide in 1 bore of CAST. Could act like an 'antenna' where axions could be converted into microwave photons

Still a lot to determine, a feasibility study is underway

In the long-term: A New Generation of Axion Helioscopes

See talk by I. Irastorza tomorrow on the Next Generation Axion Helioscope

A new generation of helioscopes

CAST has gained valuable expertise on the helioscope technique along these years

Future improvement:

More flexible movement, new low background detectors, x-ray focusing devices, new, more powerful magnet.

A new generation of helioscopes

Large parts of the model region for QCD axions could be explored in the coming decade

Summary

CAST, in these 11 years:

 \succ has put the strictest limit on axion searches for a wide m_a range

 \succ Is scanning the region most favoured by QCD models, first result presented:

 $g_{a\gamma\gamma} \le 2.5 \times 10^{-10} \text{ GeV}^{-1}$ (95% C.L) for 0.39< $m_a < 0.65 \text{ eV}$

- \succ has studied by-products in parallel to the main physics:
 - HE axions, 14.4keV axions from nuclear transitions, LE axions (visible)
- has gained much experience on Helioscope Axion Searches
- \succ is established as a reference result in axion physics.
- at present is looking to:
- \succ improve the ⁴He and vacuum results of the experiment
- explore the possibilities to study other exotica: paraphotons, solar chameleons, improve the LE setup and relic axions
- Working on the development of detectors that would increase the sensitivity But also looking in the future towards

the new generation of Axion Helioscopes

CAST in the Axion (ALP) MAP

end

Thank you for your attention