Dark Forces and Dark Matter in a Hidden Sector

Sarah Andreas

DESY

June 29, 2011

PATRAS 2011

in collaboration with: M. Goodsell and A. Ringwald

Sarah Andreas (DESY)

DF & DM in Hidden Secto

PATRAS, 29.06.2011 1 / 17

1 Motivation

- 2 Hidden Photon
- 3 Hidden Dark Matter

4 Conclusions

Outline

1 Motivation

- Hidden Sector
- GeV-scale Dark Force

2 Hidden Photon

3 Hidden Dark Matter

4 Conclusions

Motivation: Hidden Sector

- string theories usually predict existence of HS
- various supersymmetric models contain HS
 - HS needed as source of SUSY breaking

Motivation: Hidden Sector

- string theories usually predict existence of HS
- various supersymmetric models contain HS
 - HS needed as source of SUSY breaking
- HS not charged under SM gauge groups and v. v.
 - no direct interaction between HS and SM
 - connection only through messenger particles

Motivation: Hidden Sector

- string theories usually predict existence of HS
- various supersymmetric models contain HS
 - HS needed as source of SUSY breaking
- HS not charged under SM gauge groups and v. v.
 - no direct interaction between HS and SM
 - connection only through messenger particles
- HS can contain gauge fields and matter particles

\Rightarrow Dark Forces and Dark Matter

- breaking of larger gauge groups can yield hidden U(1)s
 - light hidden Photon γ'
 - couples weakly via kinetic mixing χ

- breaking of larger gauge groups can yield hidden U(1)s
 - light hidden Photon γ'
 - couples weakly via kinetic mixing χ
- indirect & direct DM experiments
 - observations by PAMELA, Fermi, DAMA, CoGeNT

- breaking of larger gauge groups can yield hidden U(1)s
 - light hidden Photon γ'
 - couples weakly via kinetic mixing χ
- indirect & direct DM experiments
 - observations by PAMELA, Fermi, DAMA, CoGeNT
 - favor DM models where light messenger particle

- breaking of larger gauge groups can yield hidden U(1)s
 - light hidden Photon γ'
 - couples weakly via kinetic mixing χ
- indirect & direct DM experiments
 - observations by PAMELA, Fermi, DAMA, CoGeNT
 - favor DM models where light messenger particle
 - generates Sommerfeld enhancement,
 - allows leptophilic DM annihilation,
 - mediates scattering on nuclei
 - \Rightarrow GeV-scale Dark Force

Stückelberg mechanism

- \blacksquare simplest mechanism to give mass to abelian gauge boson γ'
- in certain string compactifications e.g. D7-branes
 - mass depends on volume of extra dimension i.e. string-scale

$$m_{\gamma'} \gtrsim rac{M_S^2}{M_{Pl}}$$

Stückelberg mechanism

- \blacksquare simplest mechanism to give mass to abelian gauge boson γ^\prime
- in certain string compactifications e.g. D7-branes
 mass depends on volume of extra dimension i.e. string-scale

$$m_{\gamma'} \gtrsim rac{M_S^2}{M_{Pl}}$$

• intermediate string-scale: $M_S \sim 10^{9-10} \text{ GeV}$

gives right regime for axion decay constant and SUSY breaking scales

 $\Rightarrow m_{\gamma'} \sim {
m GeV} ext{-scale}$

[Goodsell et al. '09

Higgs mechanism

- kinetic mixing transfers symmetry breaking from visible sector to HS
- \blacksquare masses in HS roughly suppressed by χ

 $m_{\gamma'} \simeq \sqrt{g_Y g_h c_{2\beta}} \sqrt{\chi} v$

Higgs mechanism

- kinetic mixing transfers symmetry breaking from visible sector to HS
- \blacksquare masses in HS roughly suppressed by χ

 $m_{\gamma'} \simeq \sqrt{g_Y g_h c_{2\beta}} \sqrt{\chi} v$

Kinetic mixing χ

- integrating out heavy particles charged under both U(1)s
- kinetic mixing generated at loop level

$$\chi \sim \frac{g \gamma g_h}{16\pi^2} \times \kappa \sim 10^{-3} - 10^{-4} \qquad (\kappa \sim \mathcal{O}(1))$$

 $\Rightarrow m_{\gamma'} \sim {
m GeV}$ -scale

[Baumgart et al. '09, and following paper

Outline

1 Motivation

2 Hidden Photon

- Introduction
- Constraints

3 Hidden Dark Matter

4 Conclusions

Hidden Photon and Kinetic Mixing

- HS with extra U(1)-symmetry
 - \Rightarrow hidden photon γ'
- simplest scenario:
 - mass-term for γ^\prime
 - kinetic mixing between γ and γ'
- most general Lagrangian

$$\mathcal{L} = -rac{1}{4} F_{\mu
u} F^{\mu
u} - rac{1}{4} X_{\mu
u} X^{\mu
u} + rac{\chi}{2} X_{\mu
u} F^{\mu
u} + rac{m_{\gamma'}^2}{2} X_\mu X^\mu + g_Y j^\mu_{
m em} A_\mu$$

• γ' couples and can decay to SM fermions through kinetic mixing

Muon & Electron g-2 [Pospelov '09]

• 1-loop contribution from γ'

- 1-loop contribution from γ'
- SM precision measurements [Hook et al. '10]
 - deviations from SM measurements
 - notably corrections to Z⁰-mass

• 1-loop contribution from γ'

SM precision measurements [Hook et al. '10]

- deviations from SM measurements
- notably corrections to Z⁰-mass

BaBar: $\Upsilon(3S)$ decay [Essig et al. '10]

- search for decay into pseudoscalar a $e^+e^- \xrightarrow{\gamma a} \gamma \mu^+\mu^-$
- reinterpretation since identical final state $e^+e^- \xrightarrow{\gamma\gamma'} \gamma\mu^+\mu^-$

- γ' Bremsstrahlung off e^-/p -beam
- decay $\gamma' \rightarrow e^+e^-$

- γ' Bremsstrahlung off e^-/p -beam
- decay $\gamma' \rightarrow e^+e^-$

Past e⁻-beam dump searches^[Bjorken et al. '09]

- γ' Bremsstrahlung off e^{-}/p -beam
- decay $\gamma' \rightarrow e^+e^-$

Past e⁻-beam dump searches^[Bjorken et al. '09]

New and rediscovered experiments

- thin target at MAMI [A1 collaboration '11]
- Serpukhov *p*-beam dump^[Blümlein,Brunner'11]
- [SA, Niebuhr, Jacobsohn, e-beam dump at Orsay Ringwald, in prep.

premsstrahlung

e

- γ' Bremsstrahlung off e^-/p -beam
- $\blacksquare \ {\rm decay} \ \gamma' \to e^+e^-$

Past e⁻-beam dump searches^[Bjorken et al. '09]

New and rediscovered experiments

- thin target at MAMI [A1 collaboration '11]
- Serpukhov *p*-beam dump^[Blümlein,Brunner'11]
- *e*-beam dump at Orsay [SA, Niebuhr, Jacobsohn, Ringwald, *in prep.*]

Sensitivities of future experiments

- JLab: APEX, HPS, DarkLight
- Mainz: MAMI, MESA
- DESY: HIPS at 6 GeV in 2013

Outline

1 Motivation

2 Hidden Photon

3 Hidden Dark Matter

- Toy Model
- More sophisticated Model

4 Conclusions

Additional Dirac fermion ψ

one extra mass parameter m_{ψ}

Additional Dirac fermion ψ

one extra mass parameter m_{ψ}

Relic abundance Ωh^2

- annihilation of ψ through and into γ'
- resonance for $m_{\gamma'} = 2 \ m_{\psi}$
- $\Rightarrow \psi$ total DM or subdominant component

Sarah Andreas (DESY)

PATRAS, 29.06.2011 13 / 17

Additional Dirac fermion ψ

one extra mass parameter m_{ψ}

Relic abundance Ωh^2

- annihilation of ψ through and into γ'
- resonance for $m_{\gamma'} = 2 m_{\psi}$
- $\Rightarrow \psi$ total DM or subdominant component

Direct Detection

- elastic scattering on nuclei
- mediated by γ'
- spin-independent vector-like interaction

Toy Model

Toy-Model: Fermionic DM

Direct Detection

- elastic scattering on nuclei
- mediated by γ'
- spin-independent vector-like interaction

Comparison with experiments

- limits on σ_{SI} from XENON & CDMS
- potential signature in DAMA & CoGeNT

[SA, M. Goodsell, A. Ringwald, work in progress]

Direct Detection

- elastic scattering on nuclei
- mediated by γ'
- spin-independent vector-like interaction

Comparison with experiments

- limits on σ_{SI} from XENON & CDMS
- potential signature in DAMA & CoGeNT

[SA, M. Goodsell, A. Ringwald, work in progress]

Sarah Andreas (DESY)

Direct Detection

- elastic scattering on nuclei
- mediated by γ'
- spin-independent vector-like interaction

Comparison with experiments

- limits on σ_{SI} from XENON & CDMS
- potential signature in DAMA & CoGeNT

[SA, M. Goodsell, A. Ringwald, work in progress]

Sarah Andreas (DESY)

SUSY U(1) HS

- consider MSSM in visible sector
- most simple anomaly-free HS:
 - three chiral superfields
 - superpotential: $W \supset \lambda_S SH_+H_-$

SUSY U(1) HS

- consider MSSM in visible sector
- most simple anomaly-free HS:
 - three chiral superfields
 - superpotential: $W \supset \lambda_S SH_+H_-$

Gauge mediation

Dirac fermion is DM as in toy-model

10⁻⁴

10

SUSY U(1) HS

- consider MSSM in visible sector
- most simple anomaly-free HS:
 - three chiral superfields
 - superpotential: $W \supset \lambda_S SH_+H_-$

Gauge mediation

Dirac fermion is DM as in toy-model

Gravity mediation

- lightest particle is Majorana fermion
- annihilation through $\gamma' \Rightarrow$ total or subdominant DM
- axial coupling gives spin-dependent scattering
 - Picasso, COUPP & KIMS constrain σ_{SD}

20

my [GeV]

30

40

50

PATRAS, 29.06.2011 15 / 17

Outline

1 Motivation

- 2 Hidden Photon
- 3 Hidden Dark Matter

4 Conclusions

Conclusions

- HS motivated by various aspects both from top-down (string theory, SUSY) and bottom-up (DM)
- potentially rich content: dark forces and dark matter
- weakly coupled but still phenomenologically interesting
- hidden photons as dark force
 - \Rightarrow constrained by past & further tested in future experiments
- HS can contain viable dark matter candidates
- many SUSY & string inspired models give well motivated HS dark matter ⇒ interesting phenomenology still to be studied