Standardized tools for Underground Science: Radiogenic and Cosmogenic Backgrounds

Priscilla Cushman University of Minnesota

Patras Workshop Mykonos, June 27, 2011

WIMP hints or just poorly understood background?

WIMP hints or just poorly understood background?

WIMP hints or just poorly understood background?

<u>Assay and Acquisition of Radiopure Materials</u>

Principle Investigators

Priscilla Cushman (University of Minnesota) Dongming Mei (University of South Dakota) Kara Keeter (Black Hills State University) Richard Schnee (Syracuse University)

Engineering Consortium

CNA Consulting Engineers (Lee Petersen) Dunham Associates Miller Dunwiddie Architecture, Inc

An NSF S4 (~ \$1M) was awarded for these specific tasks

- Characterize radon, neutron, gamma, and alpha/beta backgrounds at Homestake
- Develop a conceptual design (+ cost & schedule) for a common, dedicated facility (FAARM) for low background counting and other assay techniques
- Assist where appropriate in the creation of common infrastructure required to perform low background experiments.
- Perform targeted R&D for ultra-sensitive screening and water shielding

Inner Tunnel Lab

γ-flux7.974×10-5cm-2 s-1n-flux4.817×10-10cm-2 s-1

4 < ppt (GeMPI, arrays)
6 < ppb (well, clover, coax)
2 Beta Cages
Prototyping Space
(DM or 0vββ or novel assay)

Radon Mitigation Common cryogen plumbing and LN boil-off for screeners

Central Pool

0.1 counts/day, E > 250 keV

sensitivity of 10⁻¹⁴ g/g U/Th 10⁻¹² g/g K modeled on Borexino CTF 2m diam nylon vessel filled with LS Observed by low rad QUPIDs Top-loading from dedicated Clean Room

Inner Tunnel Lab

γ-flux 7.974×10⁻⁵ cm⁻² s⁻¹ n-flux 4.817×10⁻¹⁰ cm⁻² s⁻¹

4 < ppt (GeMPI, arrays)

With the Demise of DUSEL, the detailed engineering plans for the "FAARM" become irrelevant

unless parts can be adopted elsewhere... water-shielded central pool for ultra-sensitive screening? see me after the talk !

June 30, 2011

Observed by low rad QUPIDs Top-loading from dedicated Clean Room

P. Cushman Patras Workshop

Inner Tunnel Lab

4 < ppt (GeMPI, arrays)

With the Demise of DUSEL, the detailed engineering plans for the "FAARM" become irrelevant

unless parts can be adopted elsewhere... water-shielded central pool for ultra-sensitive screening? see me after the talk !

Redirect Funds to "Integration" Tasks

Identified the following task as a priority

Validate and improve the Physics in current Simulations Create a Common Simulation Framework for underground experiments.

Begin work by comparing simulations

across collaborations across simulation packages (GEANT4 vs FLUKA) across caverns (rock composition, overburden) across muon distributions (site-specific MUSIC vs Groom parameterization)

Detailed plans (working groups) were formulated in the areas of

Cosmogenics Radiogenics (alpha-n, fission, material screening) and Universal Materials database Modular Geant4 Framework for Underground Science

We are drawing on expertise from a larger collaboration

AARM Scientific Collaboration

	Yuri Efremenko
Craig Aalseth	Brian Fujikawa
Henning Back	Reyco Henning
Tim Classen	Jeff Martoff
Jodi Cooley	Robert McTaggart
Darren Grant	

Eric Hoppe Andreas Piepke Andrew Sonnenshein John Wilkerson Tullis Onstott

AARM International Scientific Advisory Panel

Laura Baudis , Richard Ford, Gilles Gerbier, Gerd Heusser, Andrea Giuliani, Mikael Hult, Vitaly Kudryavtsev, Pia Loaiza, Matthias Laubenstein, Neil Spooner

Much of the recent planning was done in

- 1. AARM Collaboration Meeting (Feb 2011) <u>http://zzz.physics.umn.edu/lowrad/meeting3/talks</u>
- 2. Berkeley Comos Workshop (April 2011) https://docs.sanfordlab.org/docushare/dsweb/View/Wiki-141

COSMOGENICS GEANT4 Physics Improvements

SLAC GEANT4 Collaboration (esp. Dennis Wright)

New Physics List called "Shielding" in Geant 4.9.4

designed for use in shielding applications, and also in high energy similar to QGSP_BERT_HP, except

uses a different string fragmentation model (FTF instead of QGS) better handling of ions (Binary cascade for light, QMD for heavy) improved neutron cross sections from JENDL database

use G4 builder classes to extend physics list

- add radioactivity model to all recoil ions with option to de-activate
- could also add optical photons

improved light-ion-induced reactions

 Shielding already replaces old GHEISHA-style models with G4BinaryLightIon and QMD models

new muon-nuclear process, model and cross section developed

- Muon exchanges virtual photon with nucleus
- Virtual photon treated as "0" to initiate cascade
- Bertini cascade (0–10 GeV), FTFP (> 10 GeV)

Neutron spectra entering cavern at 4850 level

study by A. Reisetter

Mei & Hime (arXiv:astro-ph/0512125)

An early attempt to parameterize cosmogenic neutrons wrt depth

June 30, 2011

Neutron Rate Spectrum entering cavern at 4850m

Muon-induced Neutron Kinetic Energy Spectrum

at the rock cavern boundary (geometry: 6m³ centered in 20m³) our current result

A. Dementyev etal Gran Sasso note: INFN/AE-97/50, 22 Sep 1997 - Bezrukov and Bugaev + SHIELD A. Hime and D.-M. Mei, parameterization arXiv:astro-ph/0512125 v2 6 Dec 2005 - FLUKA (coincident direct muons?, A?)

low energy neutron groups rather than the 72 previously.

COSMOGENICS Comparing GEANT4 vs FLUKA

Neutron Yield is a key uncertainty. Mount a careful Study

Muon energies: 10, 30, 100, 280, 1000 GeV. Materials: C, CH₂, H₂O, CaCO₃, NaCl, Fe, Pb.

Simple Fiducialized Geometry

Tony Empl (FLUKA) Anthony Villano (GEANT4) Vitaly Kudryavtsev (Advisor)

Neutron production rate per muon per g/cm²

All neutrons produced inside the material are counted, but only those produced in the middle are included in the final neutron yield.

All vertices fully reconstructed All physics processes recorded Care taken to avoid double counting

> First try with Liquid scintillator chosen in order to be able to compare with Borexino and Kamland. (and LVD) C_9H_{12} at density $\rho = 0.887$ g/cm³.

COSMOGENICS Comparing GEANT4 vs FLUKA

Time from 1st interaction to n-capture. $\tau = 247.0 \,\mu s$ (G4) 255.9 μs (FLUKA) Borexino takes data only after around 200 μs Kamland after about 1300 μs . Position from primary track to n-capture. Possible observable for delayed captures

COSMOGENICS Standardizing Muon and Neutron Distributions

An Object Lesson in the importance of Mutually Acceptable Input Parameters.

Question from DUSEL planning "Can GEODM (7400 level) be redesigned to work at 4850?"

were in

The results of the GEODM 4850 Sim 3 m water shield reduced # evts with n (KE>200keV) by only .16 direct contradiction to LZ20 Sim
 3-4 orders of magnitude reduction
 0.3 nDRU_r μ-induced bkgd evts
 before analysis cuts

Turned out to hinge on details of the INPUT neutrons and accompanying shower particles (next few slides show why)

Solution:

Everybody MUST AGREE on the same set of backgrounds for the same cavern. Need to produce and validate and make available a background environment for each lab.

<u>Methodology of the LZ20 Simulation</u>:

Single neutrons from a parameterized spectrum. Thrown isotropically from a sphere surrounding detector. Whole thing is in a vacuum without walls

Advantage: Easy to get lots of stats

Disadvantages:

No shower particles or 2^{ndry} n's No parent muons No correlations No multiplicity

GEODM 4850 full G4 MC has extremely simple model of Detector, but a sophisticated generation of neutrons

June 30, 2011

P. Cushman Patras Workshop

Try different generators in the GEODM geometry	isotropic M&H vacuum	isotropic M&H from inner surface of rock	Full G4 from muons
GEODM geometry with Different n Generators	Isotropic Sphere (8.75 ton-y) scaled to 1	Isotropic Cavern (0.895 ton-y) scaled to 1	Full Rock Sim (1.25 ton-y) scaled to 1
neutrons in Ge	<u>76</u> n = 11 evts	<u>106</u> n = 15.8 6.7 evts	<u>2,754</u> n = 12.3 224 evts
nuclear recoils in Ge (10 – 100 keV) (Veto not yet applied) Thus, the biggest difference By neglecting secondary ne	<u>14.5</u> NR = 3.3 4.46 evts (1.5 singles) is obtained in going utrons, hadronic and	21.2 NR = 4.8 4.47 evts (0 singles) from the Isotropic cav EM showers, and muc	787 NR=5.4145.6 evts(8 singles)(8 singles)ern to the Full Sim.ons in cavern,
One predicts far fewer reco	ils and a lower multip	olicity than you will rea	ally get.

Final step: Send Neutron files to Pangilinan – Redo LZ20 Sim to close the circle.

Eventual Goal

- 1. Cosmogenic Generation of Hadronic Showers
 - 1. Move from Muon Parameterization to Muon propagation code (MUSUN) Already in use at Soudan, Gran Sasso, Modane, Boulby
 - 2. Geography and geology info being gathered for Homestake (Zhang, Mei) Validate with muon measurements for slant paths, normalization
 - 3. Create new site-specific neutron flux and multiplicity files
- 2. Radiogenic Backgrounds included for all spaces
 - 1. Gamma, neutron from rock samples
 - 2. Measurements in situ
 - 3. Radon monitoring

Start with Homestake: Standardized Monte Carlo FRAMEWORK

Each experiment has its own strengths and physics modules

Glean useful information from them, e.g.

MaGe has a waveform library DEAP/CLEAN incorporated RAT (Reactor Analysis Tool – Braidwood) SuperCDMS phonon physics add-on Many experiments pushing on cross sections relevant to their experiment

Each experiment has evolved specific classes and macros for running jobs Choose one of the good ones

> Workshop defined what we mean by "good" Examples: LUXSim (Kareem Kazkaz) New SuperCDMS Framework (SLAC, Mike Kelsey) We (Chao Zhang) will adopt a framework similar to LUXSim *BUT Generalize*

e.g. LUXSimDetectorComponent fully usable without the rest of the LUXSim management

Additional Jobs

- extend G4 materials to have associated properties in a common way
- develop an even more general "object library" of things like PMT structures, etc.
- develop a general-purpose TPC track reconstruction library (LLNL/NNSA money!) June 30, 2011 P. Cushman Patras Workshop

RADIOGENICS & SCREENING

<u>Materials Database (James Loach – Majorana)</u>

-begin with a database "Couchdb" and a search engine "Lucene"
-structure has a main database – this database copied and sync to institutions
-"users" and "developers" write code to access information for their purpose

Decision taken (Feb 2011) to adopt it and add

-new counted materials (by experiment)
-legacy materials (e.g. ILIAS database)

need volunteers/resources

-Organizing entities: AARM, LRT Workshop, SNOLab
-functionality,

e.g. contaminated materials automatically incorporated into Geant4

Software with a "sanctioned" database made available Loach → Villano - begin software distribution, starting with a "test" database from Majorana

Some Details about the Materials Database

Open source non-relational database

A flat collection of JSON documents of named fields

```
"sample": {
    "name": "Fused silica",
    "description": "Corning 7940, lot 56667",
    "source": "Mark Optics Ltd.",
    "owner": "LBNL LBF",
}
```

Data aggregated and displayed using views

Schema-free so structure can be varied and extended

Distributed (can self-replicate between machines)

Speaks HTML

Widely-used (CERN, BBC etc.)

Future-safe data format (JSON text)

Commercial online hosting services available

http://couchdb.apache.org http://guide.couchdb.org/ http://www.couchbase.com http://www.cloudant.com

 Tin, LANL

 Tin, LANL

 Tin, Canberra

Tin, LANL

description	Tin, 99.9	998	8% p	urity	
technique	Gamma				
results	U chain	<	1.7		mBq/kg
	Th chain	<	3.1		mBq/kg
	K-40		25	(14)	mBq/kg
	Co-50	<	1.5		mBq/kg
	description technique results	description Tin, 99.9 technique Gamma results U chain Th chain K-40 Co-50	description Tin, 99.9998 technique Gamma results U chain < Th chain < K-40 Co-60 <	description Tin, 99.9998% pt technique Gamma results U chain < 1.7 Th chain < 3.1	description Tin, 99.9998% purity technique Gamma results U chain < 1.7 Th chain < 3.1 K-40 25 (14) Co-60

tin

Tin, LANL

sample	description	Tin, 99.9998% purity
	source	Adam Montoya, LANL
	owner	LANL
	set	Majorana
	mass	710 g
	geometry	Block of metal
measurement	technique	Gamma
	institution	LANL / WIPP
	date	5 / 2010
	practitioner	Steve Elliot, LANL (elliotts@lanl.gov)
	description	The tin was placed inside two nested plastic bags and put inside the WIPP-n cavity. Background spectrum 66.78 days.
	count length	99.2 d
	detector	WIPP-n
	results	U chain < 1.7 mBq/kg
		Th chain < 3.1 mBq/kg
		K-40 25 (14) mBq/kg
		Co-60 < 1.5 mBq/kg
data	reference entry by	Majorana report M-TECHDOCDET-2010-110 James Loach (jcloach@lbl.gov)

 ∃ Tin, LANL
 ∃ Tin, Canberra

MAJORANA Material Assay			
Database	tin	29	90

Tin, LANL	Export	×
sample	descripti source owner set mass geometr techniqu institutic date count ler detector results Copy and paste into Excel or similar. "Tin, LANL",,"U chain","<","1.7",,"mBq/kg","Th chain"," <","3.1","mBq/kg","C40","25","14","mBq/kg","Co-60"," <","1.5","mBq/kg" "Tin, LANL","LI',"<","0.007","ug/g","Be"," <","0.004","ug/g","Na",<<","9","ug/g","Mg",<<","1","ug/g","Al <","1","ug/g","K","<","10","ug/g","Ca","<","60.,"ug/g","Sc"," <","0.1","ug/g","K","<","10","ug/g","Ca","<","60.,"ug/g","Sc"," <","5",,"ug/g","Mn",,"0.15",,"ug/g","Fe",,"60.6",,"ug/g","Co"," <","1",,"ug/g","NI"," <","0.3",,"ug/g","Cu",,"24.4",,"ug/g","Zn",,"2.5",,"ug/g","Ga"," <","0.3",,"ug/g","Sr",<","0.007",,"ug/g","Se",<","0.3",,"ug/g","R <","0.006","ug/g","Sr",<","0.007","ug/g","Nb"," <","0.006","ug/g","Ca","<","0.007","ug/g","Rh"," <","0.006","ug/g","Ca","<","0.03","ug/g","Cd",<","0.04",,"ug/g","S <","37","ug/g","Te","<","0.03","ug/g","Cd",<","0.04",,"ug/g","S <","37","ug/g","Te","<","0.03","ug/g","Cd",<","0.04",,"ug/g","S	•," b"," d","
data	reference entry by James Loach (jcloach@lbl.gov)	

∃ Tin, LANL
∃ Tin, Canberra

COSMOGENICS

Benchmarking the Monte Carlo

Maybe we eventually agree on Simulations ... But are we right?

New experiments at Soudan to characterize hadronic showers underground

Combined with Neutron Multiplicity Meter (UCSB, Case, Davis) and LS neutron detectors (USD)

June 30, 2011

Muon proportional tubes lining walls & ceiling

Summary

Some funding exists over the next year to make good progress on

Improving Geant4 Code for Underground Physics Benchmarking: FLUKA vs Geant4 and Simulation vs Data Generic studies of the effect of depth (multiplicity, shower topology, veto efficiency) Universal Materials Database

A Geant4 Monte Carlo will be developed for Homestake

has a framework which is easily transferrable to other labs includes both radiogenic and cosmogenic backgrounds as input modules

This may form the basis for a Standard Underground Simulation

Each lab will contribute background data, coded into the standard framework Users can request the Background Module for their lab Enter your experiment's geometry Press go

You are invited to participate. We should consider funding structures for the future.

Backup Slides

Effectiveness of 3m Water Shield III

1. Pangilinan Cosmogenic Activity and Backgrounds Workshop 9 JUILE JU, ZUIL L. Cushinan Tracias Workshop

- \sim 1.7 billion neutrons generated or \sim 22,000 years of running LZ20 at 4850 ft. level
- LZ20 background goal is 1 background event in 13.5 T in 1,000 live days or 4 ndrur in 5 - 25 keVr
 - 0.3 ndru_r background rate for NR events from muon-induced neutrons
 - Analysis cuts (single scatter, elastic, fiducial) reduce background by 2 orders of magnitude

Pangilinan Cosmogenic Activity and Backgrounds Workshop 5