White Dwarfs as Physics Laboratories: The Axion case

> Jordi Isern ICE-CSIC/IEEC

Collaboration:

L. Althaus, S. Catalán, A. Córsico, E, García-Berro, M. Salaris, S. Torres

7th Patras Workshop on axions, WIMPs & WISPs Mykonos, June 26th, 2011

The white dwarf population is one of the best studied!

- # They are the end stage of
 low and intermediate-mass4
 stars
- # Their evolution is just a cooling process
- # The basic physical ingredients of their evolution are well identified (not all has been satisfactorily solved yet)
- # Impressively solid observational background for testing theory.

Courtesy of Christensen-Dalgaard

Non-radial g-modes

Long period waves ~ 10² - 10³ s
Gravity is the restoring force

The period increases as the star cools down and decreases as it contracts.

The radial term can be neglected for cool enough stars (DAV, DBV)

- DOV variables: the drift can be positive or negative depending on the mode
 - PG1159-35: P = 516 s and dP/ dt=13.07 +/-0.3 x 10⁻¹¹ s/s
- DBV variables: the drift is always positive. dP/dt ~ 10⁻¹³ – 10⁻¹⁴ s/s. No drift measurements
- DAV variables: the drift is always positive.
 - G117-B15A: P=215.2 s, dP/dt = 3.57x10⁻¹⁵ s/s (Kepler et al 2005)
 - R548: P =213.13 s, dP/dt </= 5.5 x 10⁻¹⁵ s/s

Còrsico and Athaus, 2004

Kepler et al 2005

$\dot{\Pi} = (12.0 \pm 3.5) \times 10^{-15} \text{ s/s}$

The first value (Kepler et al'91) was a factor of 2 larger than expected. Three solutions:

- Observational error
- Whited warfs with "IME" cores
- Exotic source of cooling

$$\mathcal{M}_{bol}(t) = -2.5 \log L(t) + ctn$$

$$\mathcal{M}_{bol}(t) = -2.5 \log L(t)$$

DFSZ axions Bremmsstrahlung is dominant Nakagawa et al 1987, 1988

 $g_{ae} \sim 2.2 \times 10^{-13}$ (m_a ~ 8 meV) lsern+'92

Evolution of the measurements of the period of pulsation period drift of G117-B15A

Observed and predicted secular drift of G117-B15A

White dwarf cooling

$$L + L_{v} + (L_{e}) = -\int_{M_{WD}} c_{v} \frac{dT_{c}}{dt} dm - \int_{M_{WD}} T\left(\frac{\partial P}{\partial T}\right)_{v,x} \frac{dV}{dt} dm + (l_{s} + e_{s})\dot{m}_{e} + (\varepsilon_{e})$$

A L(T_c) relationship is necessary to solve this equation It depends on the properties of the envelope. $L \propto T^{\alpha}$

 $\alpha \approx 2.5 - 2.7$

CO.core/He-envelope/H-envelope

The luminosity function

Number of white dwarfs per unit of volume and magnitude versus luminosity

$$n(L) = \int_{M_l}^{M_u} \Phi(M) \Psi(T_G - t_{cool} - t_{ps}) \tau_{cool} \, dM$$

- 1.- n(L) is the observed distribution
- 2.- Φ, Ψ are the IMF and SFR respectively. T_G is the age of the Galaxy
- 3.- t_{cool} is the cooling time
 - $t_{\mbox{\tiny PS}}$ is the lifetime of the progenitor
 - τ_{cool} is the characteristic cooling time Hidden an IMFR

If the 3 ingredients are known it is possible to use the WDLF to test new physics

Surveys are more and more accurate and significative

Sample of WD: High precision LF

Rowell & Hambley'11

Luminosity versus time (dotted lines without sedimentation)

DA, non-DA influence

Fig. 1.— $L - T_c$ relationships for our 0.61 and 0.87 M_{\odot} WD models (with phase separation not included). Solid lines denote H-atmosphere models, dashed lines He-atmosphere ones.

Assume that: $L = g T_C^{\gamma}$ From the figure we see that: $\gamma_{DA} \approx \gamma_{nDA}$ in the range $-3 \le \log L \le -1$

 $L \approx -\frac{dU}{dt} \approx -C_{V} \frac{dT_{C}}{dt} \text{ (we neglect the compression term)}$ $\frac{dL}{dt} = \gamma g T_{C}^{\gamma-1} \frac{dT_{C}}{dt} \text{ (from the L-T_{C} relationship)}$ $N_{WD} \propto \dot{l}^{-1} = -\frac{L}{dL/dt} = \frac{C_{V}}{\gamma g} T_{C}^{1-\gamma}$

Comparison between cooling models

GAIA mission (2013-2018)

400,000 WD

Large Synoptic Survey Telescope (LSST)

First light: 2015 Start Science: 2017

50,000,000 WD r > 27.5 mag

Conclusions:

- # Because of their simplicity, WDs are excellent complementary laboratories for testing new physics.
- # The recent luminosity functions and the measurement of the secular drift of the pulsation period of DAV suggest that WDs cool down more quickly than expected .
- # Axions or light bosons able to couple to electrons could account for this discrepancy ($g_{ae} \sim 2 \times 10^{-13}$)
- # The results seem robust (for the moment) but more refinements are needed:
 - * Extend the observational LF to high and low luminosities
 - * Obtehtion of the LF for massive white dwarfs
 - * Improvement of the cooling models. Envelope is crucial
 - * Role of binaries
- # This method can be used in other problems

GAIA & LSST can provide the necessary precision & accuracy

Dependence on the IMF

The WDLF is not very dependent on the IMF as far as low mass stars are effectively produced.

Influence of the SFR

If the peak coincides with the normalization (red line) the bright branch falls below the standard

15

 $\log N (pc^{-3} M_{bol}^{-1})$ -6 ψ = 3, if $t_0 < t < t_0 + \Delta t$ ψ = 1, if $t < t_0$; $t > t_0 + \Delta t$ 5 10 M_{bol}

-2

-4

$$n(l) = \int_{M_{\min}}^{M_{\max}} \Phi(M) \Psi(T_{gal} - t_{cool} - t_{SP}) \tau_{cool} \, dM$$

In the case of massive WD

$$\begin{split} \mathbf{t}_{SP} &\ll t_{cool} \\ n(l) &\propto \Psi \Big(T_{gal} - t_{cool} \Big) \end{split}$$

The luminosity function of massive WD closely follows The SFR Irregularities are detectable!

Influence of binaries:

- # Presence of He-white dwarfs
- # Mergers
- # Tidal heating
- # Non resolved binaries

The axion case

- Axions were proposed as a solution to the strong CP problem
 - KVSZ model -> Axions couple to hadrons & photons
 - DFSZ model -> Axions also couple to electrons
- Coupling is determined by the Peccei-Quinn scale f_a which is related to the mass of the axion: $m_a = 6.0 \text{ eV} \cdot (10^6 \text{ GeV/f}_a)$
- Experiments have failed to detect axions
- Constraints from astrophysical arguments
 - Solar properties
 - Red giants (HB & AGB stars)
 - Core collapse supernovae
 - Cosmological considerations

The remaining axion window

For these masses, axions can freely escape from stars They can be treated as a sink of energy

The best fit is obtained for $m_a cos^2\beta \sim 5~meV$

Birthrate calculation

Isern et al, Thermonuclear Supernovae, Ed. Ruiz-Lapuente, Canal, Isern, Kluwer p. 127 (1997)

- Only evolutionary channels in which RLOF occurs when the envelope is convective
- Models obtained with FRANEC. Solar metallicity
- WD cooling models from Salaris et al 2000
- Catalán et al (2008) IFMR
- Common envelope treatment: Iben & Tutukov (1984)
- Magnetic breaking
- Salpeter's IMF for the primary,
- F(q) ∞ q; q = M₂/M₁
- Distribution of initial separations: $H(A_0) \propto 1/A_0$
- During the merging ALL the mass of the secondary is transferred to the primary

Influence on core collapse supernovae

Raffelt'06 m_a(KSVZ) < 16 meV m_a (DFSZ) ?

Keil et al '97

Nucleon bremsstrahlung is dominant