

The Search for Dark Matter with XENON

Elena Aprile Columbia University 7th Patras Workshop, Mykonos, June 28, 2011

XENON 100 Collaboration

Thursday, June 30, 2011

Evolution of the XENON Dark Matter program

The XENON Family of Detectors

future

(2011-2015)

XENON10 Achieved (2007) σ_{SI}=8.8 x10⁻⁴⁴ cm²

XENON100

Achieved (2011) $\sigma_{sl}=7.0 \times 10^{-45} \text{ cm}^2$ Projected (2012) $\sigma_{sl}\sim 2\times 10^{-45} \text{ cm}^2$

The XENON Two-Phase TPC

a large, scalable, homogeneous, self-shielding, position-sensitive detector

The XENON100 Detector

- Drift field in LXe ~ 0.5 kV/cm
- Amplification field in GXe ~10 kV/cm
- Total 161 kg high-purity Xe: <1ppb O₂/Xe and <100 ppt Kr/Xe contamination
- 62 kg as active target; 99 kg as active LXe scintillator veto
- 242 PMTs with $\sim 1 \text{ mBq (U/Th)}$
- S1 yield :2.2 pe/keV (122 keV and 0.5 kV/cm)
- S2 yield: 18 pe/e (single electron sensitive!)
- 200W Cryocooler and FTs outside shield
- Materials screened for low-radioactivity

The XENON100 Cryogenic System

The XENON100 PMTs

XENON100: The PMTs

- 242 PMTs (Hamamatsu R8520-06-AI)
- 1 " square metal channel developed for XENON
- Low radioactivity (<1 mBq U/Th per PMT)
- 80 PMTs for bottom array (33% QE)
- 98 PMTs for top array (23% QE)
 - 64 PMTs for top/bottom/side Veto (23% QE)

Thursday, June 30, 2011

3D Event Localization in XENON100 TPC

9

I" PMTs allow event position reconstruction in X-Y (from S2 signals) with millimeter precision

Drift time measurement gives Z coordinate with sub-millimeter precision

3D event localization powerful for background rejection: I) Fiducial Volume and 2) Single/Multiple Scatters

Fiducialization

Position-dependent Signals corrections

XENON100 @ LNGS

Shield: 20cm H_2O , 20cm Pb, 20cm PE, 5cm Cu Shield cavity purged with N_2 to keep Rn level < 0.5 Bq/m³

Neutrons

- radiogenic from fission and (a,n) reactions in detector and shield materials
- cosmogenic from spallation of nuclei in materials by highenergy muons

Electromagnetic Radiation

- natural radioactivity in detector and shield materials
- ²²²Rn in shield cavity
- ⁸⁵Kr and ²²²Rn in LXe
- cosmogenic activation of detector materials and of LXe during production and storage on Earth' surface

Measured Background

E. Aprile at al. (XENON100), Phys. Rev. D 83, 082001 (2011)

In good agreement with Monte Carlo simulations based on detailed mass model and measured values for U/Th/K/Co/Cs from radioactivity in all screened XENON100 materials. No LXe veto cut

.. the lowest of any Dark Matter experiment

- In 30kg fiducial volume background rate is ~10 mdru even before the LXe veto cut
- The LXe veto reduces rate to ~5 mdru, where ⁸⁵Kr in LXe starts to dominate

XENONIO0 Dark Matter Search with 100 days of data during 2010

Aprile et al. submitted to Physical Review Letters arxiv:1104.2549

15

XENON DATA Taking 2009-2010

Analysis Steps

Expected Background in Signal Region in 48kg and 100 days

- from radioactivity of detector's materials and estimated 700 ppt Kr in Xe
 - 1.70 electron recoils after 99.75% S2/S1 rejection
 - 0.03 nuclear recoils
- from muon-induced nuclear recoils (Monte Carlo): 0.08
- •Total expected background in signal region: 1.8 +- 0.6
- •Prediction from data and Monte Carlo; verified on high energy side band

Search Result

One of the 3 Candidate Events

Nuclear Recoil Energy Scale

Plante et al. - submitted to Phys. Rev. C

XENON100 Dark Matter Limit (90% CL)

XENON100 Status & Outlook

log₁₀(S2/S1)

- •Serviced Cryogenic System
- •Run Kr distillation column
- •Lowered S2 Trigger Threshold
- •Completed new AmBe Calibration
- •Taking large Co60 & Th232 Calibration
- •Background at the same level as in 2009
- •Detector Parameters very stable

Thursday, June 30, 2011

XENON100 by 2012

The XENON1T Experiment

XENONIT at LNGS

- 2.5 t LXe (1 m³ TPC) for 1t fiducial target mass
- Goal is 100 x lower background: LXe self-shielding, Ti vessels, low radioactivity PMTs and 10 m x 10 m water shield as active muon veto

XENON1T by 2015

Summary

- XENON100 has achieved its design goal of 100 times less background than XENON10 and is currently the most sensitive WIMPs direct search.
- No evidence for WIMPs in 100 days of data from 2010 search.
- Placed the most stringent limit on spin-independent WIMP-nucleon cross section. Minimum at 7 x 10⁻⁴⁵ cm² @ 50 GeV. Started to probe favorite SUSY models.
- XENON100 result does not support low mass WIMPs and exclude iDM.
- New Dark Matter search with lowered intrinsic background ongoing. We expect to reach XENON100 design goal of 2 x 10⁻⁴⁵ cm² by 2012.
- XENONIT design advances, with feedback from R&D studies on enabling technologies. Experiment approved by INFN to be located at LNGS HallB.
- Sensitivity reach is 5 x 10⁻⁴⁷ cm² by 2015. Important synergy with other direct searches, with the LHC and indirect searches