Light-shining-through-walls via virtual minicharged particles in a magnetic field

> 7th Patras meeting ☆ Mykonos ☆ June 27th, 2011

1 Towards tunneling via virtual minicharged particles

2 (Preliminary) Discovery potential of LSW via virtual minicharged particles

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

1 Towards tunneling via virtual minicharged particles

(Preliminary) Discovery potential of LSW via virtual minicharged particles

- ◆ □ ▶ → @ ▶ → 差 ▶ → 差 → のへで

Light-shining-through-walls scenarios - an overview

• well-known LSW with *real* axions/ALPs: $\mathcal{L}_{int,P} = \frac{1}{4} g_P \phi F_{\mu\nu} \tilde{F}^{\mu\nu}$

Light-shining-through-walls scenarios - an overview

- well-known LSW with *real* axions/ALPs: $\mathcal{L}_{int,P} = \frac{1}{4} g_P \phi F_{\mu\nu} \tilde{F}^{\mu\nu}$
- $\mathcal{L}_{\text{int}} = -\frac{1}{2}\chi F_{\mu\nu}B^{\mu\nu} + e\bar{\psi}A\psi + e_{\text{h}}\bar{h}Bh$

diagonalize $\Rightarrow \mathcal{L}_{\text{effective}} \sim \epsilon e \bar{h} A h$

LSW with *real* hidden photons, infer on MCPs indirectly. two couplings: hidden photon e_h & minicharge ϵe

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Light-shining-through-walls scenarios – an overview

- well-known LSW with *real* axions/ALPs: $\mathcal{L}_{int,P} = \frac{1}{4} g_P \phi F_{\mu\nu} \tilde{F}^{\mu\nu}$
- $\mathcal{L}_{int} = -\frac{1}{2}\chi F_{\mu\nu} \mathbf{B}^{\mu\nu} + e\bar{\psi}\mathbf{A}\psi + e_{h}\bar{h}\mathbf{B}h$ diagonalize $\Rightarrow \mathcal{L}_{effective} \sim \epsilon e\bar{h}\mathbf{A}h$

LSW with *real* hidden photons, infer on MCPs indirectly. two couplings: hidden photon e_h & minicharge ϵe

 [Jaeckel,Gies 09]: "tunneling of the third kind", virtual process, direct bounds on ε,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Light-shining-through-walls scenarios - an overview

- well-known LSW with *real* axions/ALPs: $\mathcal{L}_{int,P} = \frac{1}{4} g_P \phi F_{\mu\nu} \tilde{F}^{\mu\nu}$
- $\mathcal{L}_{int} = -\frac{1}{2}\chi F_{\mu\nu} \mathbf{B}^{\mu\nu} + e\bar{\psi}\mathbf{A}\psi + e_{h}\bar{h}\mathbf{B}h$ diagonalize $\Rightarrow \mathcal{L}_{effective} \sim \epsilon e\bar{h}\mathbf{A}h$

LSW with *real* hidden photons, infer on MCPs indirectly. two couplings: hidden photon e_h & minicharge ϵe

 [Jaeckel,Gies 09]: "tunneling of the third kind", virtual process, direct bounds on ε,

For zero-field B = 0 this was shown to be noncompetitive with current bounds [Jaeckel, Gies 09]

The presented LSW scenarios all have $B \neq 0$ \Rightarrow How about switching on a magnetic field? (probably easier in experiment than in theory...;))

Light-shining-through-walls scenarios - an overview

- well-known LSW with *real* axions/ALPs: $\mathcal{L}_{int,P} = \frac{1}{4} g_P \phi F_{\mu\nu} \tilde{F}^{\mu\nu}$
- $\mathcal{L}_{int} = -\frac{1}{2}\chi F_{\mu\nu} \mathbf{B}^{\mu\nu} + e\bar{\psi}\mathbf{A}\psi + e_{h}\bar{h}\mathbf{B}h$ diagonalize $\Rightarrow \mathcal{L}_{effective} \sim \epsilon e\bar{h}\mathbf{A}h$

LSW with *real* hidden photons, infer on MCPs indirectly. two couplings: hidden photon e_h & minicharge ϵe

 [Jaeckel,Gies 09]: "tunneling of the third kind", virtual process, direct bounds on ε,

For zero-field B = 0 this was shown to be noncompetitive with current bounds [Jaeckel, Gies 09]

The presented LSW scenarios all have $B \neq 0$ \Rightarrow How about switching on a magnetic field? (probably easier in experiment than in theory...;))

object of interest \rightarrow the polarization tensor: naive ansatz: perturbative treatment of the in the coupling strength parameter $\frac{2\epsilon eB}{m^2}$ ok in QED but not for MCPs!: both regimes necessary $\frac{\epsilon eB}{m^2} \ll 1$ and $\frac{2\epsilon eB}{m^2} \gg 1$

object of interest \rightarrow the polarization tensor: naive ansatz: perturbative treatment of the in the coupling strength parameter $\frac{2\epsilon eB}{m^2}$ ok in QED but not for MCPs!: both regimes necessary $\frac{\epsilon eB}{m^2} \ll 1$ and $\frac{2\epsilon eB}{m^2} \gg 1$

virtual process: need *full momentum dependence* within polarization tensor

object of interest \rightarrow the polarization tensor: naive ansatz: perturbative treatment of the in the coupling strength parameter $\frac{2\epsilon eB}{m^2}$ ok in QED but not for MCPs!: both regimes necessary $\frac{\epsilon eB}{m^2} \ll 1$ and $\frac{2\epsilon eB}{m^2} \gg 1$

virtual process: need *full momentum dependence* within polarization tensor

 $\theta = \measuredangle(\vec{B}, \vec{k}) = 0$ & proper time integral managable! \Rightarrow our choice (only chance) [see talk by F.Karbstein on thursday!]

States of polarization for $\theta = \sphericalangle(\vec{B}, \vec{k}) = 0$

Polarization states: \perp to B, & tilted: recall: $B \neq 0 \Rightarrow v \neq c$ (quasi-longitudinal – in transversal subspace!) $\rightarrow \lfloor$ [TsEr] following results are for the \lfloor mode alone! (work in progress)

States of polarization for $\theta = \measuredangle(\vec{B}, \vec{k}) = 0$

Polarization states: \perp to B, & tilted: recall: $B \neq 0 \Rightarrow v \neq c$ (quasi-longitudinal – in transversal subspace!) $\rightarrow \lfloor$ [TsEr] following results are for the \lfloor mode alone! (work in progress)

NB: Physics of the ∟ propagation mode

number of photons in the $_$ mode has yet to be determined: (what happens for B = 0 to $B \neq 0$?) \Rightarrow Our strategy today: Assume maximum coupling to $_$ in the following and report again with full result!

1 Towards tunneling via virtual minicharged particles

(Preliminary) Discovery potential of LSW via virtual minicharged particles

- ◆ □ ▶ → 個 ▶ → 目 ▶ → 目 → のへで

Exclusion bounds for $_$ mode

$$\begin{array}{l} \rightarrow B = 5 T, \omega = 2.33 \mathrm{eV} \\ \rightarrow n_{\mathrm{in}}/n_{\mathrm{out}} = 10^{25} \\ (\text{ as, e.g. at ALPS}) \end{array}$$

 \rightarrow barrier thickness: 1mm, 1 μ m

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

Physics of virtual LSW – dependence on wall thickness

tree-level process: conversion at some point in front of the barrier and reconversion at some point behind the barrier, \Rightarrow **independent** of wall thickness

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ ● ●

Physics of virtual LSW – dependence on wall thickness

tree-level process: conversion at some point in front of the barrier and reconversion at some point behind the barrier, \Rightarrow **independent** of wall thickness

barrier-traversion with **virtual particles**: Compton wavelength smaller than thickness \Rightarrow process obstructed

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Physics of virtual LSW – dependence on wall thickness

tree-level process: conversion at some point in front of the barrier and reconversion at some point behind the barrier, \Rightarrow **independent** of wall thickness

barrier-traversion with **virtual particles**: Compton wavelength smaller than thickness \Rightarrow process obstructed

barrier-traversion with **virtual particles**: Compton wavelength greater than barrier thickness \Rightarrow process is in principle possible

Physics of low mass enhancement (0th Landau level)

tree-level process: mass parameter decouples for small masses $(\Rightarrow \text{ exclusion bounds saturate})$

Physics of low mass enhancement (0th Landau level)

tree-level process: mass parameter decouples for small masses $(\Rightarrow \text{ exclusion bounds saturate})$

barrier-traversion with **virtual particles**: Compton wavelength large enough in principle but no barrier traversion

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Physics of low mass enhancement (0th Landau level)

tree-level process: mass parameter decouples for small masses $(\Rightarrow \text{ exclusion bounds saturate})$

barrier-traversion with **virtual particles**: Compton wavelength large enough in principle but no barrier traversion

same "loop position" but larger Compton wavelength. Available "phase space" grows for lower masses \Rightarrow one possible interpretation of the low mass enhancement

1 Towards tunneling via virtual minicharged particles

(Preliminary) Discovery potential of LSW via virtual minicharged particles

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 めへぐ

Summary & prospects

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

\rightarrow Challenges

- LSW with virtual minicharges need a nonperturbative treatment w.r.t. coupling strength & momentum dependence
- clarify role of ∟ propagation mode, include all modes → presented exclusion bounds could still be modified!

Summary & prospects

\rightarrow Challenges

- LSW with virtual minicharges need a nonperturbative treatment w.r.t. coupling strength & momentum dependence
- clarify role of ∟ propagation mode, include all modes → presented exclusion bounds could still be modified!

\rightarrow Prospects

- maximum coupling to ∟ with microwave cavities?
 (→ in progress)
- more generally: diffractive effects in the strong field limit (among else: fermions vs bosons)

Summary & prospects

\rightarrow Challenges

- LSW with virtual minicharges need a nonperturbative treatment w.r.t. coupling strength & momentum dependence
- clarify role of ∟ propagation mode, include all modes → presented exclusion bounds could still be modified!

\rightarrow Prospects

- maximum coupling to ∟ with microwave cavities?
 (→ in progress)
- more generally: diffractive effects in the strong field limit (among else: fermions vs bosons)