Indications for a transparent universe at very high energies

Manuel Meyer & Dieter Horns

Institut für Experimentalphysik University of Hamburg

27th June, 2011 7th Patras Workshop, Mykonos, Greece

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Opacity for extragalactic veryhigh energy (VHE) photons

Opacity in the presence of axion like particles (ALPs)

The extragalactic background light (EBL)

Diffuse background radiation

The extragalactic background light (EBL)

Diffuse background radiation

- Origin: 1. integrated starlight 2. Starlight absorbed by dust and re-emitted in the (far-) infra-red
- Direct measurements

The extragalactic background light (EBL)

Diffuse background radiation

- Origin:1. integrated starlight2. Starlight absorbed bydust and re-emitted in the 5(far-) infra-red
- Direct measurements
 difficult due to foreground emission
- Use lower limit EBL model to be conservative: Universe as transparent as possible with conventional physics

Propagation of extragalactic VHE photons

Optical depth in the presence of ALPs

Active galactic nuclei (AGN) as VHE γ-ray sources

- Center of AGN: super massive black hole with accretion disk
- VHE emission originates in the jets
- If observer looks into the jet → blazar

Urry & Padovani (1995)

Spectral energy distribution (SED) of blazars

- Blazar SED: two peaks
- Blazar sequence: correlation between peak frequency and luminosity
 → observational bias
- Large scatter of measured photon indices
- At VHE energies: impossible to measure intrinsic spectrum directly

Blazar sequence (Fossati 1998; Donato et al. 2001)

Intrinsic VHE spectrum corrected with EBL model

- Observed spectrum: reduced flux and softer
- With ALPs: additional spectral hardening expected at high energies
- Feature not significant for one single spectrum

Use large sample of VHE spectra

Source	Instrument	Redshift	E _{max} [TeV]	$\Gamma_{obs} \pm \sigma$	Source	Instrument	Redshift	E _{max} [TeV]	$\Gamma_{obs} \pm \sigma$
1ES0229+200	HESS	0.14	11.45	2.5 ± 0.19	M87	HESS	0.004	21.13	2.22 ± 0.15
1ES0347-121	HESS	0.188	3.03	3.1 ± 0.23	Markarian 180	MAGIC	0.045	1.31	3.25 ± 0.66
1ES0414+009	HESS	0.287	1.13	3.44 ± 0.27	Markarian 421	HEGRA	0.031	6.86	2.5 ± 0.4
1ES0806+524	MAGIC	0.138	0.63	3.6 ± 0.1	Markarian 421	HEGRA	0.031	13.59	2.5 ± 0.1
1ES1011+496	MAGIC	0.212	0.59	4.0 ± 0.5	Markarian 421	HEGRA	0.031	13.59	2.19 ± 0.02
1ES1101-232	HESS	0.186	2.92	2.88 ± 0.17	Markarian 421	MAGIC	0.031	4.24	1.44 ± 0.24
1ES1218+304	VERITAS	0.182	1.48	3.08 ± 0.34	Markarian 421	WHIPPLE	0.031	8.23	2.31 ± 0.04
1ES1218+304	MAGIC	0.182	0.63	3.0 ± 0.4	Markarian 421	MAGIC	0.031	1.84	2.2 ± 0.08
1ES1959+650	MAGIC	0.048	1.53	2.97 ± 0.14	Markarian 501	CAT	0.034	10	-
1ES1959+650	HEGRA	0.048	10.98	2.83 ± 0.14	Markarian 501	VERITAS	0.034	3.8	2.58 ± 0.08
1ES1959+650	HEGRA	0.048	10	1.83 ± 0.15	Markarian 501	VERITAS	0.034	1.9	2.61 ± 0.15
1ES1959+650	MAGIC	0.048	2.4	2.58 ± 0.18	Markarian 501	VERITAS	0.034	3.86	2.31 ± 0.08
1ES2344+514	MAGIC	0.044	4.0	2.95 ± 0.12	Markarian 501	HEGRA	0.034	21.45	1.92 ± 0.03
3C279	MAGIC	0.536	0.48	4.1 ± 0.7	Markarian 501	MAGIC	0.034	1.76	2.79 ± 0.12
3C66B	MAGIC	0.021	1.85	3.1 ± 0.2	Markarian 501	VERITAS	0.034	3.89	2.48 ± 0.07
BL Lacertae	MAGIC	0.069	0.7	3.6 ± 0.5	Markarian 501	VERITAS	0.034	3.81	2.26 ± 0.06
Centaurus A	HESS	0.009	4.75	2.7 ± 0.5	Markarian 501	MAGIC	0.034	4.43	2.79 ± 0.12
PKS1222+21	MAGIC	0.432	0.35	3.75 ± 0.27	PKS0548-322	HESS	0.069	3.52	2.86 ± 0.34
H1426+428	HEGRA,CAT,WHIPPLE	0.129	10.12	-	PKS2005-489	HESS	0.071	2.27	4.0 ± 0.4
H2356-309	HESS	0.165	0.91	3.09 ± 0.24	PKS2005-489	HESS	0.071	4.57	3.2 ± 0.16
H2356-309	HESS	0.165	1.71	3.06 ± 0.15	PKS2155-304	HESS	0.116	2.28	3.32 ± 0.06
H2356-309	HESS	0.165	0.92	3.06 ± 0.21	PKS2155-304	HESS	0.116	3.11	3.37 ± 0.07
M87	HESS	0.004	6.18	2.62 ± 0.35	PKS2155-304	HESS	0.116	4.72	2.71 ± 0.06
M87	MAGIC	0.004	5.35	2.3 ± 0.11	PKS2155-304	HESS	0.116	3.2	3.34 ± 0.05
M87	HEGRA	0.004	3.38	-	RGBJ0152+017	HESS	0.08	2.95	2.95 ± 0.36
M87	VERITAS	0.004	7.87	2.31 ± 0.17	RGBJ0710+591	VERITAS	0.125	3.65	2.69 ± 0.26
M87	VERITAS	0.004	4.21	-	W Comae	VERITAS	0.102	1.15	3.81 ± 0.35
					W Comae	VERITAS	0.102	1.49	3.68 ± 0.22

Search for a spectral hardening

Method:

- Correct spectrum with lower limit EBL model
- Fit power law (with cut-off) to points with $\tau_{\gamma\gamma} < 1$
- Extrapolate fit to points with $\tau_{\gamma\gamma} \ge 1$
- Calculate difference between measurement and extrapolation

$$R_i^{\text{int}} = \frac{\ln f_i^{\text{ext}} - \ln f_i^{\text{int}}}{\ln f_i^{\text{ext}} + \ln f_i^{\text{int}}}$$

 f_i^{int} : intrinsic flux f_i^{ext} : extrapolated flux

Statistical test of entire sample of VHE spectra

• Repeat procedure for all spectra and define two distributions:

$$\mathcal{S}_{\text{thin}} = \begin{cases} R_i^{\text{int}} | 1 \leq \tau_{\gamma}(E_i, z) < 2 \\ \mathcal{S}_{\text{thick}} = \begin{cases} R_j^{\text{int}} | 2 \leq \tau_{\gamma}(E_j, z) \end{cases}$$

- Compare these distributions with the *Kolmogorov-Smirnov* test
- Null hypothesis: N_{thin} and N_{thick} describe the same underlying probability distribution
- Test is independent of statistical uncertainties
- Exact shape of source spectrum *irrelevant*, test searches for a systematic effect at the transition from optical thin to optical thick, independent from distance and energy

Results

- Points in S_{thin} scatter around R = 0
- Points of S_{thick} are shifted to R > 0
- Probability that distributions are equal:

$$Q_{\rm KS} = 2.81 \times 10^{-4} \,\widehat{=}\, 3.45\sigma$$

- Indication that correction is too strong at high values of τ_{yy}
- No obvious systematic effect is found that mimics this result

- ALPs can lead to a decrease of the pair-production opacity of the universe
- For current data: effect is expected to be minute → large data sample required: 55 spectra of 25 sources considered here
- Test is independent of statistical errors of the measurements
- Result independent of shape of source spectra
- New statistical test based on the Kolmogorov-Smirnov test shows an indication of 3.45 that correction of spectra with lower limit EBL model is too strong

Outlook

Cross check with galactic sources

- Check if highest energy bins tend to show a systematically higher flux than low energy bins
- Assign redshift values of AGN to galactic sources with similar spectral index
- Repeat test, treat the observed spectra as intrinsic spectra
- Result: high energy bins do not show a higher flux than expected from the extrapolation
- No obvious systematic effect that mimics the result is found

