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                 the Axions 
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• This talk will not rely on the existence of 
axions;   however the axion concept will 
appear very useful in formulating the theory 
of anomaly-induced phenomena in QCD

• Moreover, if the axions do exist, the 
phenomena discussed in the talk will be 
widespread in the Universe, at large scales 
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Outline
• Introduction:                                                                        

i) axial anomaly and geometry of gauge theories;               
ii) AdS/CFT correspondence, axions and sphalerons;                                                                      
iii) anomalies and relativistic hydrodynamics

• The Chiral Magnetic Effect and axions

• The Chiral MagnetoHydroDynamics (CMHD) : 
relativistic hydrodynamics with axial anomaly

• Evidence for CME at RHIC and LHC; future tests
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   Geometry and gauge theory

Gauge theories “live” in a fiber bundle space that 
possesses non-trivial topology (knots, links, twists,...) 

Möbius strip, the simplest nontrivial example of a fiber bundle

Riemannian connection

Curvature tensor Field strength tensor

Gauge field
PhysicsGeometry



Chern-Simons forms

What does it mean for a gauge theory? 



SCS =
k

8π

∫

M
d3x εijk

(
AiFjk +

2
3
Ai[Aj , Ak]

)

Abelian non- Abelian

Chern-Simons theory

What does it mean for a gauge theory? 

Riemannian connection

Curvature tensor Field strength tensor

Gauge field
PhysicsGeometry



Remarkable novel properties: 

  gauge invariant, up to a boundary term

  topological - does not depend on the metric, knows only                                                         
about the topology of space-time M

  when added to Maxwell action, induces a mass for the gauge 
boson - different from the Higgs mechanism!

  breaks Parity invariance

Chern-Simons theory

SCS =
k

8π

∫

M
d3x εijk

(
AiFjk +

2
3
Ai[Aj , Ak]

)



Chern-Simons theory and 
the vacuum of Quantum Chromodynamics

 

.i

Equation:

Solution:

Coupling of
space-time
and color:

Belavin, Polyakov,
Tyupkin, Schwartz

Integer

Chern-Simons current

DµF a
µν = 0

Q =
∫

dσµKµ



Momentum

Spin
Color 

SU(2) spin

Topology-induced change of chirality

!J = !T + !S

Right        Left



10
D. Leinweber

Topological number fluctuations in QCD vacuum



DK, A.Krasnitz and R.Venugopalan,
Phys.Lett.B545:298-306,2002

P.Arnold and G.Moore,
Phys.Rev.D73:025006,2006

Topological transitions in QCD are seen 
in real-time lattice simulations 



   N
CS =   -2       -1        0         1          2 

instanton 

sphaleron 

Energy of 

gluon field 

12

Sphaleron transitions
at finite energy or temperature

Sphalerons:
random walk of 
topological charge at finite T:

Is this necessarily a classical (= weak coupling) phenomenon? 



“Physical objects and physical events are 
only "shadows" of their ideal or perfect forms, 
and exist only to the extent that they 
instantiate the perfect versions of themselves”
                        Socrates, in Platoʼs “Republic”

Socrates (Σωκράτης)
469 - 399 B.C.

       The metaphor of the cave, 380 B.C. 

“The prisoners would take the shadows to be real things and the echoes to be real 
sounds, not just reflections of reality, since they are all they had ever seen or heard.”



     The metaphor of the cave, 2011 A.D.:

“The prisoners would take the shadows to be real things and the echoes to be real 
sounds, not just reflections of reality, since they are all they had ever seen or heard.”

Black hole

AdS/CFT correspondence

What is the low-energy theory
of matter at strong coupling? 
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Effective theory: hydrodynamics

Caveman’s view:   
 Shear viscosity

 Bulk viscosity          

 Rate of topological     
transitions            

Holographic view:

Particle contents of 
supergravity:
gravitons, dilatons,
axions
= fields on the boundary

       AdS5 “Reality”:
 Graviton propagation

 Dilaton propagation

 Axion propagation

Deviation from conformal symmetry



Hydrodynamics:
an effective low-energy

Theory Of Everything (TOE)
• Hydrodynamics states that the response of the 

fluid to slowly varying perturbations is 
completely determined by conservation laws 
(energy, momentum, charge, ...)

16
      Little Bang
(heavy ion collision) Big Bang



Quantifying the transport 
properties of QCD matter

• Hydrodynamics:                                                                      
an effective low-energy theory, expansion in the ratio of 
thermal length 1/T to the typical variation scale L,  

• Each term in this derivative expansion is multiplied by an 
appropriate transport coefficient
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very small shear viscosity -
“perfect liquid”; strong coupling 

ε ≡ 1
LT



LHC

NICA, 
JINR

eIC

Is there a way to observe topological 
charge fluctuations in experiment?

yes, in heavy ion collisions!



Is there a way to observe topological charge 
fluctuations in experiment?

Relativistic ions create
a strong magnetic field:

H
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Heavy ion collisions as a source of the strongest 
magnetic fields available in the Laboratory

DK, McLerran, Warringa, 
Nucl Phys A803(2008)227

In a conducting
plasma, Faraday
induction can make
the field long-lived:
K.Tuchin, arXiv:1006.3051

NB: magnetic flux
is conserved in 
MHD! - expect the 
effect at LHC

Also:
V. Skokov, 
V. Toneev, 
A. Illarionov...
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Heavy ion collisions: the strongest magnetic 
field ever achieved in the laboratory



where we have introduced the linear densities of the left- and right-moving
charges.

In a real wire however the electromagnetic fields can propagate in (3+1)
dimensions, while the fermions are restricted to (1 + 1) dimensions. This
means that the chiral charge is still given by (??) and requires the existence
of both electric and magnetic fields. Let us assume that the carriers of charge
move with the Fermi velocity vF . The densities of the right- and left-moving
electric currents are thus

JR = e vF nR; JL = e vF nL. (42)

In (1 + 1) dimensions, the densities are related to the chemical potentials by
µL,R = hvF nL,R, where h is the Planck constant. The net electric current
moving through the wire is therefore

J = JR − JL =
e

h
(µR − µL). (43)

On the other hand, the difference between the chemical potentials for the
left- and right-moving charges is determined by the voltage V applied to the
wire: µR−µL = eV (the anomaly relation tells us that this voltage is created
by the electric field). Therefore, we get

J =
e2

h
V. (44)

Reconciling this with Ohm’s law J = σ V , we find that the conductance σ of
the quantum wire is given by a combination of the fundamental constants:

σ =
e2

h
(45)

5.2. Fermions in external magnetic field

∂µJ
µ =

e2

16π2

(
F µν

L F̃L,µν − F µν
R F̃R,µν

)
(46)

Jµ =
∂ log Z[Aµ, A5

µ]

∂Aµ(x)
(47)

$J =
e

2π2
µ5

$B (48)
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µ5 = A0
5

Chiral Magnetic Effect
in a chirally imbalanced plasma

Fukushima, DK, Warringa, PRD‘08
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Chiral chemical potential is formally 
equivalent to a background chiral gauge field:

In this background, vector e.m. current 
is not conserved:

Compute the current through

The result: Coefficient is fixed 
by the axial anomaly, 
no corrections

22



The situation is different if the field θ = θ("x, t) varies in space-time.
Indeed, in this case we have

θ ˜F µνFµν = θ∂µJ
µ
CS = ∂µ [θJµ

CS]− ∂µθJ
µ
CS. (16)

The first term on r.h.s. is again a full derivative and can be omitted; intro-
ducing notation

Pµ = ∂µθ = (M, "P ) (17)

we can re-write the Lagrangian (12) in the following form:

LMCS = −1

4
F µνFµν − AµJ

µ +
c

4
PµJ

µ
CS. (18)

Since θ is a pseudo-scalar field, Pµ is a pseudo-vector; as is clear from (18),
it plays a role of the potential coupling to the Chern-Simons current (15).
However, unlike the vector potential Aµ, Pµ is not a dynamical variable and
is a pseudo-vector that is fixed by the dynamics of chiral charge – in our case,
determined by the fluctuations of topological charge in QCD.

In (3+1) space-time dimensions, the pseudo-vector Pµ selects a direction
in space-time and thus breaks the Lorentz and rotational invariance: the
temporal component M breaks the invariance w.r.t. Lorentz boosts, while
the spatial component "P picks a certain direction in space. On the other
hand, in (2 + 1) dimensions there is no need for the spatial component "P
since the Chern-Simons current (15) in this case reduces to the pseudo-scalar
quantity ενρσAνFρσ, so the last term in (18) takes the form

∆L = c MενρσAνFρσ. (19)

This term is Lorentz-invariant although it still breaks parity. In other words,
in (2+1) dimensions the vector "P can be chosen as a 3-vector pointing in the
direction of an ”extra dimension” orthogonal to the plane of the two spatial
dimensions. This illustrates an important difference between the roles played
by the Chern-Simons term in even and odd number of space-time dimensions.
It is well-known that the term (19) leads to a gauge-invariant mass of the
photon; we will also see that it plays an important role in the Hall effect.

4.2. Maxwell-Chern-Simons equations
Let us write down the Euler-Lagrange equations of motion that follow

from the Lagrangian (18),(15) (Maxwell-Chern-Simons equations):

∂µF
µν = Jν − PµF̃

µν . (20)

5

4. Topology-induced effects in electrodynamics:
Maxwell-Chern-Simons theory

4.1. The Lagrangian

Let us begin by coupling the theory (1) to electromagnetism; the resulting
theory possesses SU(3)× U(1) gauge symmetry:

LQCD+QED = −1

4
Gµν

α Gαµν +
∑

f

ψ̄f [iγµ(∂µ − igAαµtα − iqfAµ)−mf ] ψf−

− θ

32π2
g2Gµν

α G̃αµν −
1

4
F µνFµν , (11)

where Aµ and Fµν are the electromagnetic vector potential and the corre-
sponding field strength tensor, and qf are the electric charges of the quarks.

Let us discuss the electromagnetic sector of the theory (11). Electromag-
netic fields will couple to the electromagnetic currents Jµ =

∑
f qf ψ̄fγµψf .

In addition, the term (10) will induce through the quark loop the coupling of
FF̃ to the QCD topological charge. We will introduce an effective pseudo-
scalar field θ = θ(&x, t) (playing the role of the axion field) and write down
the resulting effective Lagrangian as

LMCS = −1

4
F µνFµν − AµJ

µ − c

4
θ ˜F µνFµν , (12)

where
c =

∑

f

q2
fe

2/(2π2). (13)

check the coefficient and sign of AµJµ

This is the Lagrangian of Maxwell-Chern-Simons, or axion, electrodynam-
ics. If θ is a constant, then the last term in (12) represents a full divergence

˜F µνFµν = ∂µJ
µ
CS (14)

of the Chern-Simons current

Jµ
CS = εµνρσAνFρσ, (15)

which is the Abelian analog of (4). Being a full divergence, this term does
not affect the equations of motion and does not affect the electrodynamics.
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θ

Axion electrodynamics:
Maxwell-Chern-Simons theory

Axial current
  of quarks

Photons

EM fields in QCD “aether”

- the effective axion
field (but no kinetic 
term)



The first pair of Maxwell equations (which is a consequence of the fact that
the fields are expressed through the vector potential) is not modified:

∂µF̃
µν = Jν . (21)

It is convenient to write down these equations also in terms of the electric "E
and magnetic "B fields:

"∇× "B − ∂ "E

∂t
= "J + c

(
M "B − "P × "E

)
, (22)

"∇ · "E = ρ + c"P · "B, (23)

"∇× "E +
∂ "B

∂t
= 0, (24)

"∇ · "B = 0, (25)

where (ρ, "J) are the electric charge and current densities. One can see that
the presence of Chern-Simons term leads to essential modifications of the
Maxwell theory. Let us look at a few known examples illustrating the dy-
namics contained in Eqs(22),(23),(24),(25).

4.2.1. The Witten effect
Let us consider, following Wilczek [10], a magnetic monopole in the pres-

ence of finite θ angle. In the core of the monopole θ = 0, and away from
the monopole θ acquires a finite non-zero value – therefore within a finite
domain wall we have a non-zero "P = "∇θ pointing radially outwards from
the monopole. According to (23), the domain wall thus acquires a non-zero
charge density c"∇θ · "B. An integral along "P (across the domain wall) yields∫

dl ∂θ/∂l = θ, and the integral over all directions of "P yields the total mag-
netic flux Φ. By Gauss theorem, the flux is equal to the magnetic charge of
the monopole g, and the total electric charge of the configuration is equal to

q = c θ g =
e2

2π2
θ g =

e

2π2
θ (eg) = e

θ

π
, (26)

where we have used an explicit expression (13) for the coupling constant c,
as well as the Dirac condition ge = 2π × integer.
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Assuming that the domain walls are thin compared to the distance L between
them, we find that the system possesses an electric dipole moment

de = c θ (B · S) L =
∑

f

q2
f

(
e

θ

π

) (
eB · S

2π

)
L; (29)

in what follows we will for the brevity of notations put
∑

f q2
f = 1; it is easy

to restore this factor in front of e2 when needed.

!B

!E

∼ + eθ
π · eB

2π

∼ − eθ
π · eB

2π

θ != 0

θ = 0

θ = 0

Figure 2: Charge separation effect – domain walls that separate the region of θ != 0 from
the outside vacuum with θ = 0 become charged in the presence of an external magnetic
field, with the surface charge density ∼ eθ/π · eB/2π. This induces an electric dipole
moment signaling P and CP violation.

Static electric dipole moment is a signature of P , T and CP violation (we
assume that CPT invariance holds). The spatial separation of charge will
induce the corresponding electric field #E = c θ #B. The mixing of pseudo-
vector magnetic field #B and the vector electric field #E signals violation of P ,
T and CP invariances.
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The Chiral Magnetic Effect I:
Charge separation  
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!P ≡ !∇θ

Similar to electric charge
on the axion domain wall



Note that this current directed along the magnetic field !B represents a P−,
T − and CP− phenomenon and of course is absent in the ”ordinary” Maxwell
equations. Integrating the current density over time (assuming that the field
!B is static) we find that when θ changes from zero to some θ "= 0, this results
in a separation of charge and the electric dipole moment (29).

!B

θ = 0

θ̇ != 0

!J ∼ eθ̇
π · e #B

2π

Figure 3: The chiral magnetic effect – inside a domain with θ̇ "= 0 an external magnetic
field induces an electric current "J ∼ eθ̇/π · e "B/2π. θ̇ "= 0 indicates the change of the chiral
charge inducing an asymmetry between the left– and right– handed fermions inside the
domain. Note that the current "J ∼ "B is absent in Maxwell electrodynamics.

Let us discuss the meaning of formula (30) in more detail. To do this,
let us consider the work done by the electric current; to obtain the work per
unit time – the power P – we multiply both sides of (30) by the electric field
!E and integrate them over the volume (as before, we assume that θ does not
depend on spatial coordinates):

P =

∫
d3x !J · !E = −θ̇

e2

2π2

∫
d3x !E · !B = −θ̇ Q̇5, (31)
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The chiral magnetic effect II:
chiral induction 

!J = − e2

2π2
θ̇ !B

T-even
(reversible,
non-dissipative)



Chiral magnetic conductivity:
discrete symmetries

where we have introduced the linear densities of the left- and right-moving
charges.

In a real wire however the electromagnetic fields can propagate in (3+1)
dimensions, while the fermions are restricted to (1 + 1) dimensions. This
means that the chiral charge is still given by (32) and requires the existence
of both electric and magnetic fields. Let us assume that the carriers of charge
move with the Fermi velocity vF . The densities of the right- and left-moving
electric currents are thus

JR = e vF nR; JL = e vF nL. (42)

In (1 + 1) dimensions, the densities are related to the chemical potentials by
µL,R = hvF nL,R, where h is the Planck constant. The net electric current
moving through the wire is therefore

J = JR − JL =
e

h
(µR − µL). (43)

On the other hand, the difference between the chemical potentials for the
left- and right-moving charges is determined by the voltage V applied to the
wire: µR−µL = eV (the anomaly relation tells us that this voltage is created
by the electric field). Therefore, we get

J =
e2

h
V. (44)

Reconciling this with Ohm’s law J = σ V , we find that the conductance σ of
the quantum wire is given by a combination of the fundamental constants:

σ =
e2

h
(45)

5.2. Fermions in external magnetic field

∂µJ
µ =

e2

16π2

(
F µν

L F̃L,µν − F µν
R F̃R,µν

)
(46)

Jµ =
∂ log Z[Aµ, A5

µ]

∂Aµ(x)
(47)

$J =
e2

2π2
µ5

$B (48)
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P-even
T-odd

P-odd

P-odd

P-odd
T-odd

P-odd effect!

T-even
Non-dissipative current!
(quantum computing etc)

cf Ohmic
conductivity:

T-odd,
dissipative

!J = σ !E



µ5
27

arXiv:1105.0385

Phase diagram in the (T,       ) plane? (no sign problem - ongoing)



Relativistic hydrodynamics and 
quantum anomalies

• Hydrodynamics: an effective low-energy TOE. 
States that the response of the fluid to slowly 
varying perturbations is completely 
determined by conservation laws (energy, 
momentum, charge, ...)

• Conservation laws are a consequence of 
symmetries of the underlying theory 

• What happens to hydrodynamics when these 
symmetries are broken by quantum effects 
(anomalies of QCD and QED)? 28



∂µsµ ≥ 0

Chiral MagnetoHydroDynamics (CMHD) -
relativistic hydrodynamics with triangle 

anomalies and external electromagnetic fields

29

First order (in the derivative expansion) formulation:
D. Son and P. Surowka, arXiv:0906.5044

Constraining the new anomalous transport coefficients:
positivity of the entropy production rate, 

CME
(for chirally
imbalanced
matter)



Anomalous terms in hydrodynamics:
dictated by 2nd law of thermodynamics!

30

XV. RELATIVISTIC FLUID DYNAMICS

133. The energy-momentum tensor
134. The equations of relativistic fluid dynamics
...
137. Anomalies in relativistic fluids

should be added to the next editions of
hydrodynamics textbooks !



Chiral MagnetoHydroDynamics (CMHD) -
relativistic hydrodynamics with triangle 

anomalies and external electromagnetic fields

31

First order hydrodynamics has problems with causality and is 
numerically unstable, so second order formulation is necessary;

Complete second order formulation of CMHD:
DK and H.-U. Yee, 1105.6360 

Many new transport coefficients - use conformal/Weyl invariance;
still 18 independent transport coefficients related to the anomaly. 
15 that are specific to 2nd order; 13 are computed (T-invariance!)

new

Many new anomaly-induced phenomena!



+

-

excess of positive
charge

excess of negative
charge

Electric dipole moment of QCD matter!
DK, Phys.Lett.B633(2006)260 [hep-ph/0406125]

How do we look for this in experiment?



Slide from S. Voloshin



NB: P-even quantity (strength of P-odd fluctuations)



NB: P-even quantity (strength of P-odd fluctuations)



S.Esumi et al 
[PHENIX Coll]
April 2010



37

B. Mohanty [STAR Coll] QM 2011

Signal 
disappears
(below Tc)



CME studies at the LHC

38P. Cristakoglou, J. Schukraft [ALICE Coll] Talks at QM 2011



39P. Cristakoglou [ALICE Coll] Talk at QM 2011

Not reproduced by conventional models



Λ π+40

A new test: baryon asymmetry

CME Vorticity-induced 
“Chiral Vortical Effect”

CME: 
(almost) only 
electric charge

CVE: 
(almost) only 
baryon charge

DK, D.T.Son
arXiv:1010.0038; PRL

There has to be a positive correlation between 
electric charge and baryon number! mixed correlators - e.g.  



1. B violation
2. CP violation
3. Non-equilibrium
      dynamics

A.D. Sakharov,
JETP Lett. 5 (1967) 24

Cosmic connections:
Chirality generation in QGP vs. 

Baryogenesis in the Early Universe 

41

Baryon number             Chirality
EW sphalerons              QCD sphalerons
Big Bang                       “Little bang” 



If (when) axions are discovered:

42

 Relativistic plasmas in the Universe have 
to be described by CMHD coupled to the 
(space-time dependent) axion field

 Novel mechanisms for the generation of 
primordial magnetic field, separation of 
matter from anti-matter, polarization of CMB, 
acceleration of UHE particles, ....



Summary
   Interplay of topology, anomaly and 

magnetic field leads to 
 the Chiral Magnetic Effect:

confirmed by lattice QCD x QED,
signature of chiral symmetry restoration

CME and related anomaly-induced phenomena
are an integral part of relativistic hydrodynamics

(Chiral MagnetoHydroDynamics)
 

Experimental evidence at RHIC at LHC;
more studies underway


