7th Patras Workshop

Mykonos, June 26-July 1, 2011

LHCb Physics, Performance, Prospects

Olaf Steinkamp on behalf of the LHCb collaboration

Physik-Institut der Universität Zürich Winterthurerstrasse 190 CH-8057 Zürich olafs@physik.uzh.ch

- Short physics motivation
- Brief introduction to the LHCb experiment
- Some words on operational experience
- A few selected results from 2010 data taking
- Outlook for 2011 and beyond

CKM Matrix and Unitarity Triangle

• quark mixing in charged-current interactions

$$L_{cc} = \frac{g}{2\sqrt{2}} \cdot \overline{u}_{i} \cdot \gamma_{\mu} (1 - \gamma_{5}) \cdot \underbrace{V_{ij}}_{ij} \cdot d_{j} \cdot W^{\mu}$$

- 3 quark families \rightarrow 4 independent parameters
 - 3 rotation angles + 1 complex phase
- source of all CP violation in Standard Model
- unitarity implies 6 orthogonality conditions
 - 6 "unitarity triangles" in complex plane
- <u>THE</u> Unitarity Triangle from 1st and 3rd row:

$$V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0$$

$$\mathbf{V_{ij}} = \begin{pmatrix} \mathbf{V_{ud}} & \mathbf{V_{us}} & \mathbf{V_{ub}} \\ \mathbf{V_{cd}} & \mathbf{V_{cs}} & \mathbf{V_{cb}} \\ \mathbf{V_{cd}} & \mathbf{V_{cs}} & \mathbf{V_{cb}} \\ \mathbf{V_{td}} & \mathbf{V_{ts}} & \mathbf{V_{tb}} \end{pmatrix}$$

• sides and angles of Unitarity Triangle can be precisely determined from various observables in B meson systems: $B^+ = (u\overline{b}), B^0_{(d)} = (d\overline{b}), B^0_s = (s\overline{b}) + cc.$

28.06.2011

LHCb Physics, Performance, Prospects (3/28)

Unitarity Triangle from B decays

• many observables (just showing some of the more interesting ones):

- over-constrained determination of Unitarity Triangle
- inconsistencies would be sign for New Physics beyond the Standard Model
- pattern of deviations can hint at underlying dynamics of the New Physics

28.06.2011

Status 2010

- many beautiful measurements at B factories (BaBar, Belle) and Tevatron (CDF, DO)
- all results consistent with Standard Model predictions
 → CKM dominant source of CP violation in quark sector
- measurement precision permits
 New Physics at ~10% level
- loop-mediated processes: new heavy particles can change amplitudes and phases
- potential for indirect discovery of new particles to masses far in excess of LHC energy

Box Diagrams

28.06.2011

LHCb Physics, Performance, Prospects (5/28)

- main goal: perform precision measurements of <u>CP violating phases</u> and <u>rare</u> <u>heavy-quark decays</u>
- special emphasis on <u>observables with large sensitivity to New Physics</u>
 - improve consistency tests of Unitarity Triangle
 - precision on CKM angle $\boldsymbol{\gamma}$
 - compare processes with different sensitivity to New Physics
 - γ from Penguins & γ from Trees
 - observables that are predicted to be small in the Standard Model
 - $B_s^0 \overline{B}_s^0$ mixing phase, rare B decays
- exploit the large $\overline{b}b$ production cross section at the LHC
 - 290 µb at 7 TeV vs. 100 µb at Tevatron vs. 1 nb at B factories
- dedicated setup, <u>fully optimized</u> for its physics programme

Forward Spectrometer

- covers forward region (1.9 < η < 4.9)
- optimized for the strongly forward peaked heavy quark production at the LHC
- covers only ~4% of solid angle but captures
 ~40% of heavy-quark production cross section

Key Features

- excellent vertex and proper-time resolution
 - secondary B decay vertex
 - rapid $B_s^0 \overline{B}_s^0$ oscillations
- excellent momentum and invariant mass resolution
 - background rejection

- excellent <u>kaon/pion separation</u>
 - final states with kaons/pions
 - flavour tagging
- efficient trigger on <u>hadrons</u> as well as muons and electrons
 - purely hadronic final states

28.06.2011

LHCb Physics, Performance, Prospects (8/28)

LHCb Detector

28.06.2011

LHCb Physics, Performance, Prospects (9/28)

Optimized Trigger

- overcome large inelastic cross section: >100 x bb cross section
- select interesting B decay channels: typical branching fractions of 10⁻⁵
- exploit generic B decay signature: decay products with large $p_{\rm T}$ (few GeV) and high impact-parameter, well separated B decay vertex

Hardware level (LO):

- high-pT μ track segments in muon system
- high-ET clusters (e,h, γ) in calorimeters

Software level (HLT):

- multi-processor farm (14k cores)
- access to full detector data
- HLT1: cuts on impact parameter and lifetime
- HLT2: global event reconstruction
 - + selections for specific channels

O. Steinkamp

LHCb Physics, Performance, Prospects (10/28)

Data Taking

- LHCb fully operational from first day of LHC collisions in March 2010
 - > 90% of detector channels operational
 - data taking efficiency > 90%
- cap instantaneous luminosity to keep fraction of events with multiple pp interactions small
 - track multiplicity in busy forward region
 - assignment of B decay to primary vertex
- luminosity levelling by steering of LHC beams
- operating successfully at significantly higher collision multiplicities than foreseen in design
- (preliminary) results shown here based on
 ~ 35 pb⁻¹ of data collected in 2010
- already collected ~ 300 pb⁻¹ in 2011
- expect 1 fb⁻¹ by the end of the year

LHC

LHCb Physics, Performance, Prospects (11/28)

Charged Particle Tracking

- silicon micro-strips upstream of magnet
- straws + silicon micro-strips downstream
- biggest challenge is spatial alignment
 - no detectors inside magnet
 - no acceptance for cosmics
- measured resolutions very close to simulation

28.06.2011

LHCb Physics, Performance, Prospects (12/28)

$b \to J/\psi \; X \; \text{Signals}$

- clean signals, excellent mass resolutions
 - c.f. CMS: ~ 16 MeV, ATLAS: ~ 26 MeV
- world's best mass measurements

Channel		LHCb mass [MeV/c ²]	PDG [MeV/c ²]
$M(B^+ \rightarrow J/\psi K^+)$	=	$5279.27 \pm 0.11 (\mathrm{stat}) \pm 0.20 (\mathrm{syst})$	5279.17 ± 0.29
$M(B^0 \rightarrow J/\psi K^{*0})$	=	$5279.54 \pm 0.15 ({ m stat}) \pm 0.16 ({ m syst})$	5279.50 ± 0.30
$M(B^0 \rightarrow J/\psi K_{ m S}^0)$	=	$5279.61 \pm 0.29 (\text{stat}) \pm 0.20 (\text{syst})$	5279.50 ± 0.30
$M(B^0_s o J/\psi \phi)$	=	$5366.60 \pm 0.28 (\text{stat}) \pm 0.21 (\text{syst})$	5366.30 ± 0.60
$M(\Lambda_b \rightarrow J/\psi \Lambda)$	=	$5619.49 \pm 0.70 (\mathrm{stat}) \pm 0.19 (\mathrm{syst})$	5620.2 ± 1.6
$M(B_c^+ \rightarrow J/\psi \pi^+)$	=	$6268.0 \pm 4.0 \text{ (stat)} \pm 0.6 \text{ (syst)}$	6277 ± 6

[LHCb-CONF-2011-027] preliminary

28.06.2011

LHCb Physics, Performance, Prospects (13/28)

Vertex Reconstruction

- silicon strip detectors inside LHC vacuum pipe
- only 8mm from LHC beams during data taking
- retracted by ±3 cm in between fills
 - internal alignment better than 5 μm
- proper-time resolution $\sigma_{\text{+}} \approx$ 50 fs
 - compare to B lifetimes: $\tau_B \approx 1500 \text{ fs}$

measured lifetimes compatible with PDG values

PDG lifetime (ps) Channel LHCb prelim. (ps) Yield 1.638 ± 0.011 $B^+ \rightarrow J/\psi K^+$ $1.689 \pm 0.022_{stat.} \pm 0.047_{syst.}$ 6741 ± 85 $B^0 \rightarrow J/\psi K^{*0}$ $1.512 \pm 0.032_{stat.} \pm 0.042_{syst.}$ $2668\,\pm\,58$ 1.525 ± 0.009 $B^0 \rightarrow J/\psi K_{s}^0$ $1.558 \pm 0.056_{stat.} \pm 0.022_{svst.}$ 838 ± 31 $1.525\,\pm\,0.009$ $B^0_{\epsilon} \to J/\psi \phi$ $1.447 \pm 0.064_{stat.} \pm 0.056_{syst.}$ 570 ± 24 1.477 ± 0.046 $1.391^{+0.038}_{-0.037}$ $\Lambda_b \rightarrow J/\psi \Lambda$ $1.353 \pm 0.108_{stat.} \pm 0.035_{svst.}$ 187 ± 16

[LHCb-CONF-2011-001] preliminary

28.06.2011

LHCb Physics, Performance, Prospects (14/28)

K/ π Identification

- B flavour tagging \rightarrow down to few GeV
- two-body B decays \rightarrow up to 100 GeV

$$\mathsf{B}^{\mathsf{O}}_{\mathsf{d}} \to \pi^{\pm} \pi^{\mp} \iff \mathsf{B}^{\mathsf{O}}_{(\mathsf{d},\mathsf{s})} \to \mathsf{K}^{\pm} \pi^{\mp} \iff \mathsf{B}^{\mathsf{O}}_{\mathsf{s}} \to \mathsf{K}^{\pm} \mathsf{K}^{\mp}$$

- two RICH detectors with three radiators
- photon-detection in pixel-HPDs
- performance close to simulation for all momenta

28.06.2011

LHCb Physics, Performance, Prospects (15/28)

$B \rightarrow h^+h^{-}$ Signals

28.06.2011

LHCb Physics, Performance, Prospects (16/28)

CP Violation in $B^0\!\to K^\pm\pi^\mp$

- further separate $B^0 \to K^{\pm} \pi^{\mp}$ sample into $B^0 \to K^+ \pi^-$ and $\overline{B}{}^0 \to K^- \pi^+$
- asymmetry in signal yields shows CP Violation

• after correction for (small) production and detection asymmetries:

$$A_{CP}(B^{0} \rightarrow K^{+}\pi^{-}) = -0.074 \pm 0.033 \pm 0.008$$

[LHCb-CONF-2011-011] preliminary

in good agreement with world average:

$$A_{CP}(B^{0} \rightarrow K^{+}\pi^{-}) = -0.098^{+0.012}_{-0.011}$$

[HFAG 2010]

- charmless two-body B-decay modes central to LHCb physics programme
- significant contribution of Penguin diagrams \rightarrow window to New Physics !

28.06.2011

LHCb Physics, Performance, Prospects (17/28)

bb Production Cross Section

- from B⁰→ D⁰(K⁻π⁺) μ⁻X⁺: identify "D from B" by large impact parameter with respect to reconstructed primary vertex
- use wrong-sign D⁰ μ⁺ pairs
 to estimate backgrounds
- from B \rightarrow J/ ψ X: use distribution of "pseudo proper time" t_z to identify J/ ψ from b

• extrapolate from LHCb acceptance to full phase space: Pythia Monte-Carlo

$$\sigma(\textbf{pp} \rightarrow \textbf{b}\,\overline{\textbf{b}}\,\textbf{X}) \;=\; (\textbf{284} \pm \textbf{20} \pm \textbf{49}) \;\; \textbf{\mu}\,\textbf{b}$$

$$\sigma(\textbf{pp} \rightarrow \textbf{b} \overline{\textbf{b}} \textbf{X}) ~=~ (\textbf{288} \pm \textbf{4} \pm \textbf{48}) ~ \mu \textbf{b}$$

[Phys Lett B 694 (2010) 209]

[Eur Phys J C71 (2011) 1645]

• good news: LHCb performance simulations had assumed 250 μb at 7 TeV

LHCb Physics, Performance, Prospects (18/28)

CKM angle γ

- most poorly measured angle of the Unitarity Triangle
 - improving measurement precision tests consistency of Unitarity Triangle
- γ can be determined from pure Tree processes and from Penguin processes
 - comparison of results probes possible New Physics contribution in Penguins
- LHCb: for both approaches expect $\sigma(\gamma) \sim 5^{\circ}$ with 2011/12 data

γ from Trees

• final state f common to D^0 and $D^0 \rightarrow$ interference of tree amplitudes with different weak phase leads to different decay rates for B^+ and B^- decays

•
$$f = KK$$
, $\pi\pi$; $f = K^{+}\pi^{-}$; $f = K_{s}\pi\pi$

- various decay rate ratios and asymmetries → enough observables to extract γ, strong phase, ratio of magnitudes between the two diagrams
- but: interference small, branching ratios small
- statistics from Tevatron/B factories insufficient
- advantage LHCb: large B production rate, efficient trigger for hadronic final states, excellent K/ π identification

 $\begin{array}{c} \begin{array}{c} 120 \\ 100 \\ 80 \\ 100 \\ 80 \\ 40 \\ 40 \\ 40 \\ 0 \\ 5200 \end{array} \begin{array}{c} \begin{array}{c} LHCb \\ Preliminary \\ \sqrt{s} = 7 \text{ TeV Data} \end{array} \\ \begin{array}{c} B^{\pm} \rightarrow D^{0} \left(K \pi\right) K^{\pm} \\ m_{0} = 5278.15 \pm 1.57 \text{ MeV} \\ \sigma = 21.896 \pm 1.529 \text{ MeV} \\ N_{\text{Signal}} = 444 \pm 30 \end{array} \\ \begin{array}{c} 0 \\ 100 \\ 700 \\$

28.06.2011

LHCb Physics, Performance, Prospects (20/28)

γ from Penguins

- CP violation from interference of mixing and decay
 - Penguin significant \rightarrow New Physics sensitivity !
- measure two time-dependent CP asymmetries

$$\mathbf{A_{CP}}(\mathbf{t}) = \mathbf{A_{mix}} \cdot \sin(\Delta \mathbf{m_{(d,s)}t}) + \mathbf{A_{dir}} \cdot \cos(\Delta \mathbf{m_{(d,s)}t})$$

- assume U-spin symmetry (exchange of s↔d quark)
 → Penguin/Tree ratio the same for both channels
- take mixing phases $\beta_{(s)}$ from $B^0_d \! \to J/\psi K^0_s$, $B^0_s \! \to J/\psi \varphi$
- extract γ together with Penguin/Tree ratio
 (phase and magnitude) from the four amplitudes
- LHCb advantage: as before + excellent proper time resolution to resolve fast B^o_s B^o_s oscillations

28.06.2011

LHCb Physics, Performance, Prospects (21/28)

O. Steinkamp

$B_s^0 \overline{B}_s^0$ Oscillation Frequency

measured using flavour-specific decays

 $B_s^o \rightarrow D_s^-(3)\pi^+$ with $D_s^- \rightarrow K^+K^-\pi^-$

- total of ~ 1300 signal events from 35 pb^{-1}
- flavour at production (B_s^0 or \overline{B}_s^0) implied from combination of opposite-side taggers
 - lepton charge
 - kaon charge
 - vertex charge
- · calibrated on $B^+ \rightarrow J/\psi K^+$ and $B^0_d \rightarrow D^- \pi^+$
- result competitive with previous world-best measurement from CDF (using 1000 pb⁻¹)

[PRL 97, 242003 2006]

$$\Delta m_{e} = (17.77 \pm 0.10 (stat) \pm 0.07 (syst)) ps^{-1}$$

 $\Delta m_s = | 17.63 \pm 0.11 (stat) \pm 0.04 (syst) | ps^{-1}$

LHCb Physics, Performance, Prospects (22/28)

- ϕ_{s} predicted to be very small in Standard Model \rightarrow New Physics sensitivity
- "golden channel": time-dependent CP asymmetry in $B^0_s \! \to J/\psi \, \varphi$
- complication 1: lifetime difference $\Delta \Gamma_s$ between the two CP-Eigenstates of the B_s^0/\overline{B}_s^0 system not well known \rightarrow has to be determined simultaneously
- complication 2: $J/\psi\phi\,$ not produced in a CP Eigenstate \rightarrow need time-dependent angular analysis to separate CP even/odd components
- best constraints so far:
 - CDF (5.2 fb⁻¹)
 [CDF Note 10206]
 - D0 (6.1 fb⁻¹)

[D0 6098-CONF]

LHCb Physics, Performance, Prospects (23/28)

$B_{s}^{0}\overline{B}_{s}^{0}$ Mixing Phase $\phi_{s}=-2\beta_{s}$

- LHCb: statistics from 2010 data set too small for competitive measurement
 - used the data successfully to validate all aspects of analysis procedure
- obtained first constraints in $\phi_s / \Delta \Gamma_s$ plane

 $\phi_{c}^{sm} \in [-2.7, -0.5] \text{ rad } @ 68 \text{ CL}$

[LHCb-CONF-2011-006] preliminary

• good news: systematics very small \rightarrow expect world best measurement of ϕ_s from 2011 data

LHCb Physics, Performance, Prospects (24/28)

Rare Decays: $B_s^0 \rightarrow \mu^+ \mu^-$

very rare in Standard Model:

 $BR(B_s^0 \rightarrow \mu^+\mu^-) = (3.2 \pm 0.2) \times 10^{-9}$ [Buras, arXiv:1012.1447]

- but can be significantly enhanced by New Physics
- not yet observed, best upper limits so far from Tevatron
 - CDF (3.7 fb⁻¹): BR < 3.6×10^{-8} @ 90 CL [CDF note 9892]
 - DØ (6.1 fb⁻¹): BR < 4.2×10^{-8} @ 90 CL [PLB 693 (2010) 539]
- measuring branching fraction above Standard Model prediction
 would be clear sign for new physics
- improving on the upper limit constrains parameter space for New Physics models
- e.g. Minimal Supersymmetric Standard Model

$$\mathsf{BR}(\mathsf{B}^{\mathsf{O}}_{\mathsf{s}} \to \boldsymbol{\mu}^{+}\boldsymbol{\mu}^{-}) \propto \frac{\mathsf{tan}^{\mathsf{6}}\boldsymbol{\beta}}{\mathsf{m}^{\mathsf{4}}_{\mathsf{A}}}$$

LHCb Physics, Performance, Prospects (25/28)

Rare Decays: $B_s^0 \rightarrow \mu^+ \mu^-$

- advantage LHCb: large B production rate, excellent mass resolution
- classify events according to μ⁺μ⁻ invariant mass and GL: multi-variate classifier exploiting characteristics of the two-body event topology
 - distance of closest approach of the two $\mu {}^{\mbox{'s}},$ their isolation and impact parameter wrt primary vertex
 - impact parameter, pT and lifetime of B candidate
- calibrate GL on $B^0 \rightarrow h^+h^{-}$ events
- estimate invariant mass resolution from $B^{0} \rightarrow h^{+}h^{+}$ and from J/ψ , $\psi(2s) \rightarrow \mu^{+}\mu^{-}$, Y(1s), (2s), $(3s) \rightarrow \mu^{+}\mu^{-}$
- observed numbers of events in bins of invariant mass and GL compatible with expected background

$$BR(B_s^0 \to \mu^+ \mu^-) \ < \ \textbf{4.3 \times 10^{-8}} \ \textbf{@ 90\% CL}$$

[Phys.Lett.B 699 (2011) 330]

0.2 0.4 0.6 0.8 1.9 1.2 1.4 1.6

Integrated luminosity [fb

2010 now

28.06.2011

LHCb Physics, Performance, Prospects (26/28)

Long-Term Outlook

Type	Observable	Current	LHCb	upgrade	Theory
	(mentioned today)	precision	(5 fb^{-1})	(50 fb^{-1})	uncertainty
Gluonic	$S(B_s \to \phi \phi)$	-	0.08	0.02	0.02
penguin	$S(B_s \to K^{*0} \bar{K^{*0}})$	-	0.07	0.02	< 0.02
	$S(B^0 o \phi K^0_S)$	0.17	0.15	0.03	0.02
B_s mixing	$2\beta_s \ (B_s \to J/\psi\phi)$	0.35	0.019	0.006	~ 0.003
Right-handed	$S(B_s \to \phi \gamma)$	-	0.07	0.02	< 0.01
currents	$\mathcal{A}^{\Delta\Gamma_s}(B_s o \phi\gamma)$	-	0.14	0.03	0.02
E/W	$A_T^{(2)}(B^0 \to K^{*0} \mu^+ \mu^-)$	-	0.14	0.04	0.05
penguin	$s_0 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	-	4%	1%	7%
Higgs	$\mathcal{B}(B_s \to \mu^+ \mu^-)$	-	30%	8%	< 10%
penguin	$rac{\mathcal{B}(B^0 ightarrow \mu^+ \mu^-)}{\mathcal{B}(B_s ightarrow \mu^+ \mu^-)}$	-	-	$\sim 35\%$	$\sim 5\%$
Unitarity	$\gamma \ (B \to D^{(*)} K^{(*)})$	$\sim 20^{\circ}$	$\sim 4^{\circ}$	0.9°	negligible
triangle	$\gamma \ (B_s \to D_s K)$	-	$\sim 7^{\circ}$	1.5°	negligible
angles	$eta (B^0 o J/\psi K^0)$	1°	0.5°	0.2°	negligible
Charm	A_{Γ}	2.5×10^{-3}	2×10^{-4}	4×10^{-5}	-
CPV	$A^{dir}_{CP}(KK) - A^{dir}_{CP}(\pi\pi)$	$4.3 imes 10^{-3}$	4×10^{-4}	8×10^{-5}	-

28.06.2011

LHCb Physics, Performance, Prospects (27/28)

Conclusions

• LHCb has a unique potential for the

INDIRECT DISCOVERY OF NEW PHYSICS

- both the LHC and the experiment are performing very well
- in some analyses already competitive results from the 2010 data set
- already 10x more data on disk, taken under much more stable conditions
- expect to collect 1 fb⁻¹ by the end of this year
 - expect many world-best measurements from 2011 data
- stay tuned...

[ps. could only sketch a tiny fraction of the many analyses under way] [in particular, did not say anything about Charm]

28.06.2011

LHCb Physics, Performance, Prospects (28/28)

O. Steinkamp

CP Violation in the Charm Sector

- CP violation in D⁰D⁰ mixing predicted to be very small in Standard Model
- strong potential for New Physics enhancement
- experimentally unexplored field
- LHCb ideally suited for charm: already surpass
 B-factory yields with 2010 data
- most promising observables for early CP measurement: lifetime asymmetries, e.g.

$$\boldsymbol{A}_{\Gamma} = \frac{\tau \, (\overline{\boldsymbol{D}}^{\boldsymbol{0}} \! \rightarrow \! \boldsymbol{K}^{\!+} \boldsymbol{K}^{\!-}) \! - \! \tau \, (\boldsymbol{D}^{\boldsymbol{0}} \! \rightarrow \! \boldsymbol{K}^{\!+} \boldsymbol{K}^{\!-})}{\tau \, (\overline{\boldsymbol{D}}^{\boldsymbol{0}} \! \rightarrow \! \boldsymbol{K}^{\!+} \! \boldsymbol{K}^{\!-}) \! + \! \tau \, (\boldsymbol{D}^{\boldsymbol{0}} \! \rightarrow \! \boldsymbol{K}^{\!+} \! \boldsymbol{K}^{\!-})}$$

- use slow pion from $D^{\star \star} \! \to \, D^0 \pi^{\star}$ to tag D^0 flavour
- expect competitive measurements of A_{Γ} and other lifetime asymmetries from 2010 data
- several other CP violating observables in mixing and decay under investigation as well

28.06.2011

LHCb Physics, Performance, Prospects (29/28)

Electroweak Physics

- LHCb offers unique opportunity to study W and Z production in forward region
- clean event signatures, very clean Z⁰ peak
- trigger and tracking efficiencies determined from data using tag-and-probe methods
- NEW Kruger2010, preliminary from 16.5 pb⁻¹: Z⁰, W⁺, W⁻ production cross sections, W/Z ratio, W⁺/W⁻ production asymmetry for 2 < η (charged leptons) < 4.5
- all results in good agreement with theory
- provide new constraints on proton parton density functions at low x and high q²
- Drell-Yan production studies ongoing to extend these measurements to lower q²

LHCb Physics, Performance, Prospects (30/28)

Semileptonic Asymmetry

• semileptonic charge asymmetry

$$\begin{split} \mathbf{a}_{sl}^{q} \; = \; \frac{\Gamma \, (\bar{\mathbf{B}}_{q}^{0} \rightarrow \boldsymbol{\mu}^{+} \mathbf{X}) - \Gamma \, (\mathbf{B}_{q}^{0} \rightarrow \boldsymbol{\mu}^{-} \mathbf{X})}{\Gamma \, (\bar{\mathbf{B}}_{q}^{0} \rightarrow \boldsymbol{\mu}^{+} \mathbf{X}) + \Gamma \, (\mathbf{B}_{q}^{0} \rightarrow \boldsymbol{\mu}^{-} \mathbf{X})} \qquad \text{with} \quad q = d \text{, s} \end{split}$$

Dzero measured di-lepton charge asymmetry

$$A_{sl}^{b} = \frac{N_{b}^{++} - N_{b}^{--}}{N_{b}^{++} + N_{b}^{--}} \approx 0.5 \cdot a_{sl}^{s} + 0.5 \cdot a_{sl}^{d}$$

and found ~3.2 σ deviation from Standard Model prediction

- LHC is a pp collider \rightarrow intrinsic charge asymmetry \rightarrow measurement of A^b_{sl} difficult
- LHCb proposes to measure $a_{sl}^s a_{sl}^d$ by comparing the charge asymmetries in $B_s \rightarrow D_s^+(KK\pi) \ \mu^- \nu_{\mu}$ and $B^0 \rightarrow D^+(KK\pi) \ \mu^- \nu_{\mu}$
- this measurement gives a constraint orthogonal to the Dzero measurement

28.06.2011

LHCb Physics, Performance, Prospects (31/28)

Luminosity Determination

- calculate instantaneous luminosity as a function of time from beam profiles and beam currents
- obtain beam currents from pick-up monitors
- obtain LHC beam profiles from
 - van-der-Meer scans:
 - move beams horizontally and vertically
 - measure minimum bias trigger rates
 - fully automated with LHC machine
 - measured vertex distributions in LHCb vertex detector (VELO)
- uncertainty on luminosity determination currently around 10 %, dominated by uncertainty on beam currents
- expect to go down to 5 % for 2011

LHCb Physics, Performance, Prospects (32/28)