Neutrino Oscillations: Experimental Review and Prospects Dawn of the CP searches era

Christos Touramanis

7th Patras Workshop on Axions, WHIMPs and WISPs Mykonos, 26/06-01/07 2011

The "standard" 3 neutrino picture

- Production, detection: weak eigenstates v_e , v_{μ} , v_{τ}
- Propagation: mass eigenstates v_1 , v_2 , v_3
- 3x3 unitary mixing matrix (PMNS, like CKM)

$$|\nu_{\alpha}\rangle = \sum_{i} U_{\alpha i} |\nu_{i}\rangle; \qquad U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} e^{-\iota\omega_{1}} & 0 & 0 \\ 0 & e^{-\iota\omega_{2}} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 Majorana phases

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4\sum_{i>j} \Re \left[U_{\beta i} U^*_{\alpha i} U^*_{\beta j} U_{\alpha j} \right] \sin^2 \left(\frac{\Delta m^2 L}{4E} \right) + 2\sum_{i>j} \Im \left[U_{\beta i} U^*_{\alpha i} U^*_{\beta j} U_{\alpha j} \right] \sin \left(\frac{\Delta m^2 L}{2E} \right)$$

Sensitivity to oscillations depends on matching L/E to Δm^2

- Fundamental parameters of Nature in the absence of a bigger theory:
 - 3 mixing angles
 - \bigcirc CP-violating phase δ
 - 3 masses
- Must be measured experimentally

The big picture

Empirical puzzles: Baryon asymmetry

Exciting coincidences:

- Unification
- Inflation

- Forces unify at ~10¹⁶
 Inflation: spinless field ~10¹³
- Seesaw: RH neutrino ~1014

Is this accidental?

- Mass hierarchy
- Different mixing matrices
- Is there a pattern?

Open questions

- θ₁₃
- Section (δ≠0)?
- Mass hierarchy
- θ₂₃ exactly 45°?
- Anything else?
 - Steriles, CPT,
- Not in this talk:
 - Majorana?
 - Absolute mass scale

"Solar" sector (12 mixing) SNO (solar)

Flavour content of solar flux.

- Low Energy region:
- Borexino
 - first observation of ⁷Be neutrinos

SNO+, KamLAND II

matter effects inferred previously, but this is a direct demonstration

"Atmospheric" sector (23 mixing)

- Atmospheric v_{μ} disappearance
 - Departure from v_{μ}/v_{e} ratio 2:1
 - Zenith dependence (L/E)
 - Studied by Super-Kamiokande
 - No v_{τ} appearance ruled out at 3.8 σ
- Accelerator v_{μ} disappearance
 - K2K, deficit + spectrum distortion
 - MINOS with 7x10²⁰ pot neutrinos

A consistent picture built on a multitude of significant results from different techniques and experiments

BUT

Anomalies are coming back with a vengeance

LSND, MiniBoone anomalies

- LSND: 3.8 σ anti- v_e excess from anti- v_{μ}
- MiniBoone: 2.7 σ anti- v_e excess from anti- v_{μ} , near the LSND preferred L/E
- MiniBoone: 3.0σ ν_e excess appearance from ν_µ, not compatible with their anti-ν_e excess under single oscillation hypothesis
- MiniBoone antineutrino results statistics limited, more data being analyzed
- Possibilities:
 - Experimental effects, single photon excess (MB neutrinos, low E), cross-sections, fluctuations
 - Steriles: 3+1 with Δm^2 around $1eV^2$ (only antineutrinos)
 - Steriles: (3+2) + (CPT violation OR x-dim OR decay) OR

Reactor anomaly (Mention et al, antineutrinos)

- Re-evaluation of reactor flux combining full beta-decay estimates, constrained to ILL 80-89 measurements, latest on burn-up, current neutron lifetime
- Results in a 3% downward shift for previous shortbaseline reactor experiments and gets

seen/expected = 0.943±0.023

Gallium Anomaly (Giunti and Laveder, neutrinos)

- SAGE and GALLEX, ⁵¹Cr and ³⁷Ar source calibrations
- Seen/expected = 0.87±0.05
- Reactor + Gallium: disappearance, common for neutrinos and antineutrinos, if oscillation then Δm² > 1.5eV²

Putting all anomalies together

- Global fits in 3+1 models not able to combine all data
- No well motivated reason for neutrino-antineutrino differences (CPT ??)
- 3+2 fits can be better, but adding enough free parameters
- Appearance from oscillations must have disappearance counterpart
- Common analysis of MiniBoone and SciBoone (different baseline, same beam, ν_µ disappearance) rules out high masses

A messy picture to be resolved

- More data from MiniBoone; Boone proposal
- (Very) Short Baseline reactor experiments with shape + rate analysis
- Mci sources near inside large detectors (SNO+, Borexino, Kamland)
- C. Rubbia's proposal (PS beam, ICARUS + ND)
- And better neutrino interaction data from dedicated experiments (e.g. Minerva) and Near Detectors (e.g. T2K ND280)

HOT NEW RESULTS

Indication for non-zero θ_{13} from T2K

Update from MINOS

500 members, 59 institutes, 12 countries

T2K

T2K Main Goals:

★ Discovery of $v_{\mu} \rightarrow v_{e}$ oscillation (v_{e} appearance)

 \bigstar Precision measurement of ν_{μ} disappearance

T2K: the first LBL Off-Axis experiment

- Almost monoenergetic neutrino beam
 Tuned exactly at oscillation maximum
- Minimization of feed-down backgrounds
- Resulting in maximum sensitivity

T2K

- 30GeV protons from J-PARC MR
- Target station + Decay volume
- Near Detector: ND280 (off-axis); INGRID (on-axis)
- Far Detector: Super-K (50kt water Cherenkov)

T2K Near Detectors (280m from target)

ND280 events

Super-Kamiokande: a well understood far detector

simulation

Probability that μ is mis-identified as electron is ~1%

T2K

Delivered proton#

Approved in 2004, running since December 2009

- Total accumulated before 11/03/11: 1.45x10²⁰pot
- Plan to restart taking data in January 2012
- Planned power: 750kW. Achieved: 145kW

Beam stability: 1mrad on direction required for 2% neutrino energy peak stability

Search for v_e appearance

- Fix Super-K event selection on atmospheric data BEFORE any beam data were collected
- Estimate expected Super-K event rates
 - Full MC simulation
 - Use hadro-production data from NA61
 - Use ND280 rates for absolute normalization
- Estimate systematic errors on the above
- Solution Look at beam data, extract θ_{31} result

$$N_{SK}^{exp} = R_{ND}^{\mu, \ Data} imes rac{N_{SK}^{MC}}{R_{ND}^{\mu, \ MC}}$$

Neutrino flux measurement in ND280

Results

$$\begin{aligned} R_{ND}^{\mu, \ Data} &= 1529 \text{ events } / \ 2.9 \times 10^{19} \text{ p.o.t.} \\ \\ \frac{R_{ND}^{\mu, \ Data}}{R_{ND}^{\mu, \ MC}} &= 1.036 \pm 0.028 (\text{stat.})^{+0.044}_{-0.037} (\text{det. syst.}) \pm 0.038 (\text{phys. syst.}) \end{aligned}$$

Expected signal-like events in SK, θ_{13} =0

The expected number of events with 1.43 x 10²⁰ p.o.t.

$N^{exp}_{SK \ tot.} = 1.5 \ events$

	Beam v _e background	NC background	Oscillated v _µ →v _e (solar term)	Total
The expected # of events at SK	0.8	0.6	0.1	1.5

SK beam events: timing

Systematic errors

Summary of systematic uncertainties on N^{exp}SK total. for sin²20₁₃=0 and 0.1

Error source	$\sin^2 2\theta_{13} = 0$	$\sin^2 2\theta_{13} = 0.1$	cf.	
Q(1) Beam flux	$\pm 8.5\%$	$\pm 8.5\%$	sin²2θ ₁₃ =0: #sia = 0.1 #bka = 1.4	
$O(2) \nu$ int. cross section (3) Near detector	$^{\pm 14.0\%}_{^{+ 5.6}_{- 5.2}\%}$	$\pm 10.5\% \ +5.6\% \ -5.2\%$	$sin^2 2\theta_{13} = 0.1$:	
O(4) Far detector	$\pm 14.7\%$	$\pm 9.4\%$	#SIG = 4.1 #DKG = 1.5	
(5) Near det. statistics	$\pm 2.7\%$	$\pm 2.7\%$		
Total	(+22.8 %)	$+17.6 \\ -17.5 \%$		
		(due to s uncer	small Far det. ertainty for signal)	

 $N^{exp}_{SK tot.} = 1.5 \pm 0.3$ events for sin²2 θ_{13} =0 (w/ 1.43 x 10²⁰ p.o.t.)

SK beam (in-time) events, fiducial cuts

Number of events in on-timing windows (-2 \sim +10 μ sec)

Class / Beam run	RUN-1	RUN-2	Total	non-beam	
POT (x 10 ¹⁹)	3.23	11.08	14.31	background	
Fully-Contained (FC)	33	88	121	0.023	

Single electron cuts (single ring, e-like)

E>100MeV, no decay electron

π^0 rejection, total energy cut

RESULT from 1.43x10²⁰ POT

- 6 events found, 1.5±0.3 expected for $\theta_{13}=0$
- Probability to observe ≥ 6 events for $\theta_{13}=0$: 0.007
- PRL paper in print

90% C.L. interval & Best fit point (assuming Δm²₂₃=2.4 x 10⁻³ eV², sin²2θ₂₃=1, δ_{CP}=0)

```
0.03 < \sin^2 2\theta_{13} < 0.28
```

 $sin^2 2\theta_{13} = 0.11$

 $0.04 < \sin^2 2\theta_{13} < 0.34$ $\sin^2 2\theta_{13} = 0.14$

MINOS update, 24 June 2011

- 8.2x10²⁰ POT
- Improved sensitivity using Library Event Matching
- Analysis of ND data, prediction for FD for θ_{13} =0:
 - 49.5 ± 2.8(syst) ± 2.8(stat)
- Events observed: 62
- \$\theta_{13}\$=0 excluded at 89%
 \$\sin^2(2\theta_{13}) < 0.12 (0.19)
 for normal (inverse) MH

Next steps

- T2K to restart by January; data shown only 2% of approved pot
- MINOS to collect and analyze more data
- NOVA to start with full detector in 2014
- Double Chooz running; second detector in 2012
- RENO starting up
- Daya Bay filling detectors
- CP search superbeam options:
 - JPARC to Okinoshima, 100kt Lar OR Hyper-K, Mton WC
 - LBNE
 - LAGUNA-LBNO option from CERN (SPS) to Finland

Summary

- **T2K** presented first indication for electron neutrino appearance; $\theta_{13}=0$ excluded at 99.3%
- MINOS update excludes θ_{13} =0 at 89%
- A value of θ_{13} around 5-10 degrees opens up exciting options for CP search
- Many results expected in next two years
- And programmes to elucidate anomalies
- The neutrino community is busy....
 watch this space!