Search for Resonant Absorption of Solar Axions by Atomic Nuclei.

E. Unzhakov in collaboration with A. Derbin, A. Egorov, A. Kayunov, I. Mitropol'sky, V. Muratova, D. Semenov.

Saint-Petersburg Nuclear Physics Institute

Introduction

- Interaction of axions with ordinary matter is described in terms of effective coupling constants: g_{AN}, g_{Ae}, g_{Ay} .
- The idea of experimental search for resonant absorption of the axions by atomic nuclei is based on assumption that through the coupling of axions with nucleons (g_{AN}) , they can undergo resonant absorption and emission in nuclear transitions of magnetic type.

Sun as the Axion Source

- If axions do exist, the Sun has to be an intense source of these particles.
- Mechanisms of axion production in the Sun:
 - **Primakoff conversion** of the photon in the e/m field.
 - M1-type nuclear transitions.
 - Compton effect and bremsstrahlung axions.
- Experiments performed:
- **1.** <u>Source:</u> ⁵⁷Fe (14.4 keV)

<u>Detection:</u> Resonant absorption by ⁵⁷Fe target.

2.1 Source: Primakoff effect.

<u>Detection</u>: Resonant absorption by ¹⁶⁹Tm target.

2.2 <u>Source</u>: Bremsstrahlung + Compton effect.

<u>Detection:</u> Resonant absorption by ¹⁶⁹Tm target.

⁵⁷Fe Axion Flux

most The intense monochromatic axion line is caused by M1-transition of the ⁵⁷Fe nucleus (g_{AN}) .

Thermal widening creates a Gaussian spectrum with $\sigma = 2.2$ eV.

The energy of the recoil nucleus is 0.0018 eV which is negligibly

Axion Flux

1. Compton process (g_{A_o}) $\frac{d\Phi_A}{dE_A}(E_A) = \frac{1}{R_o^2} \int_0^{R_o} \int_{E_A}^{\infty} \frac{dN_\gamma}{dE_\gamma} \frac{d\sigma^c}{dE_A} dE_\gamma N_e(r)r^2 dr.$ 2. Bremsstrahlung (g_{A_e}) $\frac{d\Phi_A}{dE_A} = \frac{1}{R_o^2} \int_0^{R_o} \int_{E_A}^{\infty} \frac{dN_e}{dE_e} v_e \frac{d\sigma^b}{dE_A} dE_e \sum_{Z,A} Z^2 N_{Z,A} r^2 dr.$ A. Derbin et al., Phys. Rev. D 83, 023505 (2011) 3. Primakoff conversion $\frac{d\Phi_A}{dE_A} = (g_{A\gamma})^2 \cdot 3.82 \cdot 10^{30} \frac{(E_A)^3}{\exp(E_A/1.103) - 1}$ K. van Bibber et al., Phys. Rev. D39, 2089 (1989).

These axions could be detected via **resonant absorption by** ¹⁶⁹Tm nuclei (8.41 keV).

•

Resonant Absorption

• The cross-section of the axion resonant absorption is given by the expression similar to that for the photon absorption, multiplied by ω_A/ω_v – probability ratio.

$$\sigma(E_A) = \pi \sigma_{0\gamma} \Gamma \frac{d\Phi_A}{dE_A} \cdot \left(\frac{\omega_A}{\omega_{\gamma}}\right)$$

• The ω_A/ω_γ ratio calculated in the long-wave approximation has the following view:

$$\frac{\omega_A}{\omega_{\gamma}} = \frac{1}{2\pi\alpha} \cdot \frac{1}{1+\sigma^2} \left[\frac{g_{AN}^0 \beta + g_{AN}^3}{(\mu_0 - 0, 5)\beta + \mu_3 - \eta} \right]^2 \left(\frac{p_A}{p_{\gamma}} \right)^3$$

Here, p_{γ} and p_{A} - photon and axion momenta, $\mu_{0} = \mu_{p} + \mu_{n} \approx 0.88$ and $\mu_{3} = \mu_{p} - \mu_{n} \approx 4.71$ are isoscalar and isovector nuclear magnetic momenta, β and η are parameters depending on the particular nuclear matrix elements.

Resonant Absorption

- The values β = -1,19 and η = 0,8 for M1-transition of ⁵⁷Fe nucleus were calculated by W.C. Haxton and K.Y. Lee. (Phys. Rev. Lett. 66, 2557 1991)
- In the case of the ¹⁶⁹Tm nucleus, which has an odd number of nucleons and an unpaired proton, in the one-particle approximation the values of β and η can be estimated as $\beta \approx 1,0$ and $\eta \approx 0,5$.

Axion Absorption Rate

In the hadronic axion models (KSVZ), g^{0}_{AN} and g^{3}_{AN} constants can be represented in the following form:

$$g_{AN}^{0} = -\frac{m_{N}}{6f_{A}} \left[2S + (3F - D)\frac{1 + z - 2w}{1 + z + w} \right] \qquad g_{AN}^{3} = -\frac{m_{N}}{2f_{A}} \left[(D + F)\frac{1 - z}{1 + z + w} \right]$$

where $m_N \approx 939$ MeV is the nucleon mass. Axial coupling parameters F and D are obtained from hyperon semileptonic decays with high precision: D = 0.808 ± 0.006, F = 0.462 ± 0.011.

$$R_{A} = 1.56 \cdot 10^{-3} (\omega_{A} / \omega_{\gamma})^{2} \qquad R_{A} = 104 \cdot g_{A\gamma}^{2} (g_{AN}^{0} + g_{AN}^{3})^{2} (p_{A} / p_{\gamma})^{3} = 5.16 \cdot 10^{-3} (g_{AN}^{0} \beta + g_{AN}^{3})^{4} (p_{A} / p_{\gamma})^{6} \qquad = 4.80 \cdot 10^{-13} g_{A\gamma}^{2} m_{A}^{2} (p_{A} / p_{\gamma})^{3} = 9.29 \cdot 10^{-34} (m_{A})^{4} (p_{A} / p_{\gamma})^{6} \qquad = 6.64 \cdot 10^{-32} m_{A}^{4} (p_{A} / p_{\gamma})^{3}$$

- Planar Si(Li) detector: sensitive area diameter 66 mm, thickness 5 mm.
- The surface of the detector was divided into **9 sub-sections**, in order to decrease the electric capacity, which leads to the increase in overall energy resolution.
- Incisions were made on the n⁺-contact. HV was supplied to the common p-contact.

Experimental Setup

Si(Li) detector was located inside the vacuum cryostat and cooled by the liquid nitrogen. ⁵⁷Fe and ¹⁶⁹Tm targets were and placed 1.5 mm above detector surface inside the cryostat.

Shielding

- Passive shielding consisted of 10 mm copper capsule, 35 mm iron and 50 mm lead layer. It provided background suppression by the factor of ~500.
- In order to neutralize effects of cosmic radiation and fast neutrons the active shielding system was used. It consisted of 5 boxes with liquid scintillator that were included in coincidence scheme.

Energy Calibration

- individually.However, in order to obtain the total energy spectrum, data
- However, in order to obtain the total energy spectrum, data from each section was recalculated into the energy scale.

⁵⁷Fe Results

⁵⁷Fe Results

• The main disadvantage of the approach with axions emitted in 14.4 keV M1-transition of 57 Fe is that the nuclear-structure-dependent parameter β has a negative value.

• Together with a poorly constrained flavor singlet axial-vector matrix element *S*, leads to large uncertainty of the (ω_A/ω_γ) ratio.

¹⁶⁹Tm Results

 $m_A \leq 169 \,\mathrm{eV}$

¹⁶⁹Tm Results (g_{Ay})

• The obtained limit is applicable to any value of m_A and is new for the $m_A > 100$ eV.

¹⁶⁹Tm Results (g_{Ae})

Conclusions

- The new limits on the axion coupling constants is achieved which, in case of KSVZ model yields axion mass limits of $m_A \le 169 \text{ eV} (90\% \text{ c.l.})^{169}\text{Tm}$, $m_A \le 145 \text{ eV}^{57}\text{Fe}$.
- These imits are close to the region of "hadronic axion window" (1-20 eV) that is not covered by astrophysical restrictions or direct laboratory searches.
- The sensitivity of the experiments can be increased further, if we managed to register electrons, produced by the discharge of the excited state, since ¹⁶⁹Tm and ⁵⁷Fe levels have high electron conversion coefficients.

Publications

Axion Source	Detection Method	Obtained m _A limit eV	Публикации
⁵⁷ Fe, 14.4 keV	$A + {}^{57}Fe \rightarrow {}^{57}Fe^*$	145 (95)	Yad. Fiz (2010)
⁵⁷ Fe, 14.4 keV	$A + {}^{57}Fe \rightarrow {}^{57}Fe^*$	151 (90)	Eur. Phys. J. C (2009)
⁵⁷ Fe, 14.4 keV	$A + {}^{57}Fe \rightarrow {}^{57}Fe^*$	360 (95)	JETP Lett. (2007)
$\gamma + (B,E) \rightarrow A$	$A + {}^{169}Tm \rightarrow {}^{169}Tm^*$	169 (90)	Bull. RAS Phys (2010)
$\gamma + (B,E) \rightarrow A$	$A + {}^{169}Tm \rightarrow {}^{169}Tm^*$	191 (90)	Phys. Lett. B. (2007)
$\gamma + e^{-} \rightarrow e^{-} + A$ $e^{-} + Z \rightarrow e^{-} + Z + A$	$A + {}^{169}Tm \rightarrow {}^{169}Tm^*$	(DFSZ) 105 (KSVZ) 1300 (90)	Phys. Rev D. (2011)

Thank You for Attenion!