No.	Last name	First name	Email	Institution	lf "yes"	and an abstract
					please	
1	Abele	Hartmut	abele@ati.ac	Atominstitut - TU	qBounce-	This talk is about a test of gravitation at small distances by quantum interference deep into the theoretically interesting
			.at	Wien	Realization	regime of 10000 times gravity. The method is based on a new spectroscopy technique, devoid of electromagnetic coupling.
					ofa	The quantum bouncing ball allows us to observe transitions between gravitational quantum states, when a Schrödinger-wave
					quantum	packet of an ultra-cold neutron couples to mirror. The technique is related to Rabi spectroscopy usually used in atom optics,
					Bouncing Ball	and the experiment has the potential to test the equivalence principle and Newton's gravity law at the micron scale, because
					Gravity	Newtonian gravity and hypothetical fifth forces evolve with different phase information. Such forces can be mediated from
					Spectromete	gauge bosons propagating in a higher dimensional space and this experiment can therefore test speculations on pseudo-scalar
					r	axion coupling, where effects are predicted in the interesting range of this experiment and might give a signal in an improved
						setup.
2	Anastassopoulos	Vassilis	vassilis@upa	University of		
			tras.gr	Patras		
3	Andreas	Sarah	Sarah.Andrea	DESY	Dark Forces	Hidden sectors arise naturally in various extensions of the standard model and also from string compactifications. They
			s@desy.de		and Dark	interact with the visible sector through potentially light messenger particles with very weak couplings. Such scenarios in which
					Matter in a	the hidden sector also contains a dark matter particle are of great interest since they could explain recent terrestrial and
					Hidden	astrophysical anomalies, like the e+e- excesses observed by PAMELA, the annual modulation signal reported by DAMA/LIBRA
					Sector	and the low energy events seen by CoGeNT. In this talk I will focus on one particular messenger, the hidden U(1) gauge boson,
						presenting an update of constraints on the mass of this so called "hidden photon" and its coupling to the SM through kinetic
						mixing with the SM photon. I will also discuss phenomenological consequences for a light dark matter particle in this hidden
	Aurila	Flam		Calumbia	VENON	sector, in the context of such a "dark force".
4	Aprile	Elena	age@astro.c	Columbia	XENON	
-	Arias	Daala	olumbia.edu	Driversity	Imprints of	Theoretical background for an abalian hidden caster with light messangers has become rebust enough to look for
Э	Ands	Paola	paola.anas@	DEST	the hidden	Theoretical background for an abelian model sector with light messengers has become robust enough to look for
			uesy.ue		nhoton on	phenomenological consequences at low energy experiments. Our proposal extends previous studies on the energy experiments.
						find We study theoretical and phenomenological consequences, such as flux quantization, critical fields, vertaxes dynamics
					cosmology	neid. We study theoretical and phenomenological consequences, such as hux quantization, critical heids, vortexes dynamics,
6	Avignono	Frank	avignono@cc	Linivorsity of South		ell. The CLIOPE Experiment is being constructed in the Laboratoria Nazionale del Gran Sassa, It will have 750 kg of TeO2 spystals
0	Avignone	FIGHK	avignone@sc	Carolina	Evporimont	with known orientation. There is a proposal to the Collaboration to make a search for solar axions via the coherent Primakoff
			.euu	Carolina	and Bossible	conversion of aviens to photons in much the same way that SOLAY was done. This is possible because of a new breakthrough
					Avion	in obtaining low energy threshold data with these bolometers
					Searches	in obtaining low energy threshold data with these bolometers.
7	Baker	Oliver K	oliver baker	Vale I Iniversity	to he	to be determined later
Ĺ	Daker	Unver K.		Tale Oniversity	determined	
			e yaic.euu		later	

8	battesti	remy	remy.battesti	CNRS-LNCMI	XAX/BMV	In this contribution, we will present the results of XAX experiment peformed at ESRF Grenoble France and the status of the
			@Incmi.cnrs.		experiments	BMV experiment set up at the LNCMI Toulouse France. We will describe this novel photon regeneration experiment for the
			fr			axionlike particle search using an X-ray beam with a photon energy of 50.2 and 90.7 keV, two superconducting magnets of 3 T,
						and a Ge detector with a high quantum efficiency. A counting rate of regenerated photons compatible with zero has been
						measured. We will also present last results of the BMV experiment whose goal is to measure the birefringence induced in
						vacuum by the presence of the magnetic field.
9	Baudis	Laura	lbaudis@phy	University of		
			sik.uzh.ch	Zurich		
1) Bertone	Gianfranco	gf.bertone@	ITP, U. of Zurich	Identifying	
			gmail.com		Dark Matter	
1	1 Betz	Michael	mbetz@cern.	Cern	Status report	The detection of the existence of (relic) axions in the μ eV to meV mass range will solve one fundamental problem in
			ch		of the CERN	theoretical physics and cosmology (dark matter problem). One way to facilitate this is a microwave light shining through the
					light shining	wall experiment. In this talk we will emphasize on the engineering aspects of such an experiment, currently set up at Cern.
					through the	One critical point, to achieve meaningful results, is the electromagnetic shielding between axion-emitter and -receiver cavity,
					wall	which needs to be > 300 dB to improve over existing experimental bounds. The RF leakage or electromagnetic crosstalk
					experiment	between both cavities must be well controlled and quantified during the complete duration of the experiment, allowing us to
					with	proof that any observed signal originates from converted Axions. In addition a very high sensitivity receiver for the
					microwave	narrowband signal to be detected is required. The latter is implemented by using a phase locked tracking receiver method and
					axions and	we achieved so far an effective signal bandwidth below 10 μHz (with a corresponding thermal noise floor) for about 1 day of
					related	observation time. In this talk we discuss the development of a demonstration setup which should show the required 300dB
					aspects	isolation using a "box in a box" technique and optical fiber signal transmission. Also aspects linked to the evaluation and
						testing of the complete signal transmission and processing chain are addressed.
1	2 Brax	Philippe	philippe.brax	IPHT Saclay	too early to	Sorry again, but working on several things It could be about Solar Chameleons.
			@cea.fr		say	
13	3 Cadamuro	Davide	cadamuro@	Max-Planck-	Late	Cosmological precision data can be used to set very strict constraints on Axions and Axion-like particles produced thermally in
			mppmu.mpg.	Institut für Phyisk	cosmology	the big bang. We briefly review the known bounds and propose two new constraints for Axions and ALPs decaying in the early
			de		constraints	universe, based upon the concomitant dilution of baryon and neutrino densities, using WMAP7 and other cosmological data.
					on thermal	
					relic axions	
					and axion-	
					like particles	

14	Cantatore	Giovanni	cantatore@t	University and	The BaRBE	The BaRBE collaboration, funded by the italian INFN, is developing single-photon counting systems able to operate at
			s.infn.it	, INFN - Trieste	project and	extremely low background in low rate environments, such as those present in WISP search experiments. A BaRBE
					the	photomultiplier system, sensitive at visible energies, is presently optically coupled to one of the CAST magnet beamlines and
					perspectives	has been taking sun-tracking data since 2009. Transition Edge Sensor (TES)-based photon counters hold the promise of
					of TES	becoming the detectors of choice for present and future WISP searches. TESs basically consist of a thin metal film deposited
					sensors in	on suitable absorber. The film is held at the transition edge between normally- and super-conducting by means of an electro-
					WISP	thermal feedback. An excess of energy deposited in the absorber by incident radiation causes the film to steeply increase its
					searches	resistance generating a signal. The main advantages of TES-based counters are a practically zero background rate, high energy
						resolution with spectroscopic response, and single-photon-counting capability. In addition, the peak-sensitivity energy can be
						chosen in a wide interval from sub-eV to tens of keV by tailoring the absorber material during the fabrication stage. TES
						drawbacks are the relatively small active area (typically 100x100 micron^2) and the ultracryogenic operation (around 100 mK).
						Refrigerators able to routinely reach sub-K temperatures are however commercially available, while researchers are already
						developing TES arrays pushing active areas up to 1x1 mm ² and beyond. BaRBE is presently assembling a TES-based counter
						sensitive at 1-2 eV to characterize it and test its long-term background in view of employing it in actual WISP search
						experiments. Possible future developments at different energies will also be presented.
15	Carmona	Jose Manuel	jcarmona@u	Universidad de		
			nizar.es	Zaragoza		
16	Crivelli	Paolo	crivelli@phys	Institute for	Positronium	In this talk, we will review the concept of mirror matter and describe an experiment to search for this hidden sector. Mirror
			.ethz.ch	Particle Physics,	portal into	matter could have a portal to our world through photon-mirror photon mixing (epsilon) which would lead to orthopositronium
				ETH Zurich	the Mirror	(o-Ps) to mirror orthopositronium oscillations. The experimental signature of this process is the apparently invisible decay of
					World	o-Ps. The expected sensitivity of the experiment in the mixing strength of 10-9 is more than one order of magnitude below
						the current Big Bang Nucleosynthesis limit and is in a region of parameter space of great theoretical and phenomenological
						interest. An experiment with such sensitivity is particularly timely in light of the recent DAMA/LIBRA observations of the
						annual modulation signal consistent with a mirror type dark matter interpretation.
17	Cushman	Priscilla	prisca@physi	University of	Cosmogenic	All dark matter and neutrinoless double beta decay experiments need to understand their neutron background and
			cs.umn.edu	Minnesota	and	characterize their shielding radiopurity. ILIAS and AARM have provided the means for experiments to collaborate on common
					Radiogenic	goals in simulation, Monte Carlo benchmarking, and screening. I will report on recent collaborative work on a universal
					Backgrounds:	materials database, a common simulation structure, and neutron benchmarking efforts, as well as plans for continuing this
					Generalized	work over the next decade.
					Tools for	
					Underground	
					Experiments	
18	Dafni	i neopisti	tdafni@cern.	Universidad de	CASI	
10	Davannart	Martun	cn martun davo			
19	Davenport	ividi tyfi	nnort@cern	CERIN		
20	Denig	Achim	denig@knh u	Johannes	Search for	We present an overview of possibilities for Dark Photon searches at the Mainz Microtron, a high-intensity electron accelerator
			ni-mainz.de	Gutenberg	the Dark	for fixed target experiments. In a 4-days pilot run the A1 collaboration at MAMI could prove the feasibility of measurements of
				University Mainz	Photon at	this kind. These results as well as future possibilites at a dedicated accelerator will be presented.
					MAMI	

21	Derbin	Alexander	derbin@pnpi	St.Petersburg	Search for	I would like to present a poster: TITLE: Search for 5.5 MeV solar axions with Borexino detector AUTHORs: A. Derbin and V.
			.spb.ru	Nuclear Physics	5.5 MeV	Muratova on behalf of the Borexino collaboration. ABSTRACT: A search for 5.5-MeV solar axions emitted in the \$p + d
				Institute	solar axions	\rightarrow \rm{^3He} + \gamma (5.5\rm{MeV})\$ reaction have been performed with Borexino detector. The Compton
					with	conversion of axion to a photon \$A + e \rightarrow e + \gamma\$, axioelectric effect \$A + e + Z \rightarrow e + Z\$, decay of
					Borexino	axion in two photons \$A \rightarrow 2\gamma\$ and Primakoff conversion on nuclei \$A + Z \rightarrow \gamma + Z\$ are
					detector	considered. The new constraints on constants of interaction of axion with electrons, photons and nucleons are obtained.
22	Döbrich	Babette	babette.doeb	TPI Jena, Germany	Light-shining-	Considering vacuum polarisation in an external magnetic field by virtue of minicharged particles, a novel light-shining-through-
			rich@uni-		through-	walls-scenario is presented where light passes a barrier through virtual fermionic or bosonic minicharge particle-antiparticle
			jena.de		walls with	states. We compare this scenario, whose theoretical treatment heavily relies on non-perturbative analytical insights into the
					virtual	photon polarization tensor, to established experiments of the light-shining- through-walls (LSW) type and present prospective
					minicharge	exclusion bounds in the fractional-charge-mass plane for a dedicated LSW setup. We argue that this LSW-scenario drastically
					particle-	differs from established searches on multiple levels, culminating in the observation that the exclusion limits derived from this
					antiparticle	process do not saturate for small minicharge masses and thus have the prospect of considerably improving established
					states in	laboratory fermionic minicharge bounds.
					external	
					magnetic	
					fields	
23	Ehret	Klaus	klaus.ehret@	DESY		
			desy.de			
24	Espriu	Domenec	espriu@ecm.	University of	Photon	A slowly time varying cold axion background induces subtle modifications in the properties of photons. The lack of Lorentz
			ub.es	Barcelona	propagation	invariance allows for processes such as radiation from a charged particle (similar to tge Cerenkov effect)that are normally
					in a cold	forbidden. Due to this cosmic rays generate a characteristic spectrum that is several orders of magnitude below the
					axion	synchrotron radiation background, but may be eventually. The photon propagator in such a background is derived and it
					background	exhibits rather remarkable properties. Unfortunately these effects are also hard to detect.
					with and	
					without	
					magnetic	
					fields	
25	Finger	Michael	michael.finge	Charles University		
26	Cavala	Delen	r@cern.ch	In Prague		Nouthing manages and outdamps for physics beyond the Ctondard Mardel. Their response and univided here the result of the U
26	Gavela	Belen	belen.gavela	Universidad	The flavour	Neutrino masses are evidence for physics beyond the Standard Model. Their masses and mixings have changed radically our
			@uam.es	Autonoma de	of neutrinos	perception of the flavour puzzle. Nevertheless, they cannot indicate by themselves what is the new underlying physics. Are
				Madrid (UAIVI) and		there new -exotic- neutrino and/or charged lepton signals within reach, that may help to elucidate the origin of neutrino
						masses? We will discuss the present situation with a rather model-independent approach. The implications of Minimal Flavour
		<u> </u>			<u>c. I : v</u>	violation (a generic ansatz very successful in the quark sector) will be also discussed.
27	Gburek	Szymon	sg@cbk.pan.	Space Research	SphinX -	Solar Photometer in X-rays (SphinX) was a spectro-photometer designed to observe the solar corona in X-rays in the energy
			wroc.pl	Centre, Polish	Solar	range 1.00 -15.00 keV. From February till 29 November 2009 SphinX measured solar X-ray flux almost continuously. All SphinX
				Academy of	Photometer	data are now available publicly in level-1 FITS format. Sphinx present repository status is discussed. Methods of processing
				Sciences,Solar	ın X-rays	Sphinx data and possible directions of their analysis are explained. In particular properties of solar spectra are studied in order
				Physics Division		to find constraints for coupling constants in theories involving axions and their conversion to X-rays in magnetic field.

28	Gironnet	Johann	gironnet@ip nl.in2p3.fr	Institut de Physique Nucléaire de Lyon - CNRS	Latest results of Edelweiss II	The EDELWEISS-II collaboration has performed a direct search for WIMP dark matter with an array of ten 400 g heat-and- ionization cryogenic detectors equipped with interleaved electrodes for the rejection of near-surface events. Results from fourteen months of continuous operation at the Laboratoire Souterrain de Modane will be shown and their interpretation in terms of limits on the cross-section of spin-independent elastic and inelastic interactions of WIMPs and nucleons will be presented. The result obtained demonstrates the excellent background rejection capabilities of these simple and robust detectors in an actual WIMP search experiment. Some first results with 800 g detectors will be also presented together with the prospects for this experiment and the ton scale EURECA project.
29	Hasinoff	Michael	hasinoff@ph	University of British Columbia		
30	Irastorza Isern	Igor Jordi	igor.irastorza @cern.ch isern@ieec.c at	Universidad de Zaragoza Insitute for Space Sciences	A new generation axion helioscope White dwarfs as physical	We present a proposal for a new generation axion helioscope, with a potential sensitivity to the axion photon coupling down to a few 10^-12 GeV^-1, 1-1.5 orders of magnitude beyond the CERN Axion Solar Telescope (CAST), currently the most powerful implementation of the axion helioscope concept. We show that such improvement is conceivable by fully exploiting innovations already introduced by CAST, namely, x-ray focusing optics and low background x-ray detectors, as well as a new magnet with substantially enlarged magnetic volume. If axions also couple to electrons, the Sun produces a larger flux for the same value of the Peccei-Quinn scale, allowing one to probe a broader class of models. Except for the axion dark matter searches, this experiment will be the most sensitive axion search ever, reaching or surpassing the stringent bounds from SN1987A and possibly testing the axion interpretation of anomalous white-dwarf cooling that predicts an axion mass of a few meV. Beyond axions, this new instrument will probe entirely unexplored ranges of parameters for a large variety of axion-like particles (ALPs) and other novel excitations at the low-energy frontier of elementary particle physics. The evolution of white dwafs is just a simple process of cooling that is very sensitive to the physical ingredients used to describe it and can be tested using either the luminosity function (LF) or the sismological properties of such stars. Thanks to
					the axion case	the next future. In this talk I describe the recent improvements in our understanding of the LF and how they translate into the axion problem.
32	Jaeckel	Joerg	joerg.jaeckel @durham.ac.	IPPP/Durham University		
33	Karbstein	Felix	felix.karbstei n@uni- jena.de	Helmholtz-Institut Jena	Optical probes of the quantum vacuum: The polarisation tensor in external fields	In an effective field theory framework, quantum corrections to the light propagation in the presence of an external field enter through the photon polarization tensor. In order to correctly predict the observables of polarisation measurements aiming at the detection of vacuum birefringence, the Schwinger effect or transition probabilities for light-shining-through-wall experiments in the quest for WISPs, a diligent analytic treatment of the polarisation tensor is indispensable. In this talk, we review the polarisation tensor in a purely magnetic field and discuss the applicability and validity ranges of its most established approximations. Focussing on vacuum polarisation in an external magnetic field by virtue of minicharged particles, we resort to a special setting, allowing us to obtain novel nonperturbative insights. These in particular constitute the central input for Light-shining-through-walls scenarios with virtual minicharge particle- antiparticle states in external magnetic fields.

34	Keum	Yong-Yeon	yykeum2011	Seoul National	Neutrino	First, we summarize the neutrino mass bounds from the neutrinoless double beta decays. Then next we discuss in detail the
			@snu.ac.kr	University	Masses from	neutrino mass bounds from cosmological probes within LCDM model and beyond. We investigate whether interaction
					Cosmological	between massive neutrinos and quintessence scalar field is the origin of the late time accelerated expansion of the universe.
					Probes	We present explicit formulas of the cosmological linear perturbation theory in the neutrinos probes of dark-energy model, and
					within	calculate cosmic microwave background anisotropies and matter power spectra. In these models, the evolution of the mass of
					Lambda CDM	neutrinos is determined by the quintessence scalar field, which is responsible for a varying effective equation of states:
					and beyond	\$\omega_{eff}(z)\$ goes down -1. We consider several types of scalar field potential and put constraints on the coupling
						parameter between neutrinos and dark energy. By combining data from cosmic microwave background (CMB) experiments
						including the WMAP 3, 5 and 7-year results, large scale structure with 2dFGRS data sets, we constrain the hypothesis of
						massive neutrinos in the mass-varying neutrino scenario. Assuming the flatness of the universe, the constraint we can derive
						from the current observation is \$\sum m_{\nu} < 0.45\$ eV at 1\$\sigma\$ (0.87 eV at 2\$\sigma\$) confidence level for the sum
						over three species of neutrinos. The dynamics of scalar field and the impact of scalar field perturbations on cosmic microwave
						background anisotropies are discussed. We also discuss on the instability issue of the our model and confirm that neutrinos
						are stable against the density fluctuation.
35	Kharzeev	Dmitri	dmitri.kharze	Stony Brook	Axions and	Chiral Magnetic Effect is the phenomenon of electric charge separation induced by the imbalance of chirality in the presence
			ev@stonybro	University	the Chiral	of external magnetic field. I will discuss the current theoretical status and the recent evidence for the effect from Relativistic
			ok.edu		Magnetic	Heavy Ion Collider at BNL. I will also speculate on the possible applications of the effect in cosmology and astrophysics.
					Effect	
					(invited)	
36	Kim	Jihn E.	jihnekim@g	Seoul National	The mu	
			mail.com	University	problem,	
37	Kishimoto	Yasuhiro	kisimoto@k	Kamioka-	Recent status	The XMASS project aims to study low-energy solar neutrinos, dark matter and double beta decay using ultra pure liquid xenon.
			m.icrr.u-	Observatry, ICRR	of XMASS	As a first step of the project, a detector with 800kg of liquid xenon in a single phase for dark matter search was proposed and
			tokyo.ac.jp		experiment	constructed. In this talk, construction of the detector, calibration using a radioactive source, and study on radioactive
						contamination will be presented.
38	Ко	Pyungwon	pko@kias.re.	Korea Institute for	EWSB and	We present a model where all the mass scales and electroweak symmetry breaking (EWSB) are generated by new strong
			kr	Advanced Study	CDM from	interaction in a hidden sector. In analogy to ordinary QCD (with electroweak interactions switched off), the hidden sector
					strongly	baryons and the lightest Nambu-Goldstone bosons could be good cold dark matter candidates.
					interacting	
					hidden	
					sector	

39	Lamanna	Giovanni	lamanna@la	LAPP	Indirect Dark	Measurements of parameters of the Cosmological Standard Model with the WMAP satellite provide stringent constraints on
			pp.in2p3.fr	(CNRS/IN2P3)	Matter	the Dark Matter relic density. Dark Matter accounts for 25% of the mass-energy budget of the Universe, but its nature is still
				(search with	to be discovered. The hypothesis that dark matter is made of WIMPs (weakly interacting massive particles), arising from the
					H.E.S.S G.	extensions of the standard model of particle physics, is explored by the latest generation of astroparticle experiments. Indirect
					Lamanna for	Dark Matter search methods are sensitive to self-annihilating/decay Dark Matter candidates and allow to constrain the Dark
					the H.E.S.S.	Matter halo profiles and the WIMP annihilation cross-section. In particular the annihilations of (massive) WIMPs can lead to
					collaboration	the production of high and very-high energy GeV and TeV gamma-rays in the final state. The final state annihilation photons
						may be detected by Imaging Atmospheric Cherenkov Telescopes like H.E.S.S. or by a satellite instrument like Fermi.
						Annihilation radiation from various candidate regions with enhanced Dark Matter density and related observations performed
						with H.E.S.S. experiment are reviewed in relation with results from other experiments (e.g. MAGIC and Fermi).
40	Li	Hau-Bin	lihb@phys.si	Institute of	Dark Matter	Dark Matter Searches with sub-keV Germanium Detector Li Hau-Bin on behalf of CDEX/TEXONO collaboration
			nica.edu.tw	Physics, Academia	Searches	CDEX/TEXONO collaboration deals with the fundamental questions like neutrino magnetic moments, neutrino-nucleus
				Sinica, Taipei,	with sub-keV	coherent scattering, as well as WIMP dark matter searches at the Kuo-Sheng Neutrino Laboratory (KSNL) and Chinese Jinping
				Taiwan.	Germanium	Underground Laboratory (CJPL). Ultra-Low Energy Germanium (ULEGe) and Point-Contact Germanium (PCGe), detectors were
					Detector	being used for such measurements. These LEGe detectors extend the performance range of Ge detectors down to a few
						hundreds of electron volts, providing good resolution, peak shape, and peak-to-background ratios. In this talk, we will present
						the the status of Chinese Jinping Underground Laboratory (CJPL), as well as WIMP search results at Kuo-Sheng Neutrino
						Laboratory.
41	Lindner	Axel	axel.lindner	DESY	Do to be	Do to be announced later
			@desy.de		announced	
42	Manalaysay	Aaron	aaronm@phy	University of	Probing low-	
			sik.uzh.ch	Zurich	mass WIMPs	
43	Martin	Andrew	andrew.marti	Yale University	First results	The first experimental results from the 34GHz cavity experiment are presented. We are sensitive to the coupling of 2 photons
			n@yale.edu		from Yale	to a light neutral boson in the presence of a 7T magnetic field and to the mixing between photons and hidden sector photons.
					34GHz cavity	We demonstrate the sensitivity of the experiment to light neutral bosons and hidden sector photons.
					experiment	
44	Meyer	Manuel	manuel.meye	University of	Indications	The transparency of the universe for very high energy (VHE) photons is limited due to pair-production with low energy
			r@physik.uni-	Hamburg	for a highly	photons of the extra galactic background light (EBL) in the optical to infrared band. Here, we use 54 energy spectra from VHE
45	Moore	Ben	moore@phys	Institute for		
			ik.uzh.ch	Theoretical		
46	Moulin	Emmanuel	emmanuel.m	Irtu, CEA Saclay	Prospects for	Dark matter particle annihilations are expected to occur in dense regions of the Galactic halo, dwarf satellite galaxies of the
			oulin@cea.fr		dark matter	Milky Way and other types of substructures. These annihilations produce high energy gamma-rays in the final state. The future
					searches	array of ground-based Cherenkov telescopes CTA is a well suited instrument to look further for particle dark matter. In this
					with CTA	talk, I will present the dark matter prospects for CTA using targeted and wide-field survey searches, and discuss the pros and
						cons of these strategies.

47	Muratova	Valentina	muratova@p	St. Petersburg	Search for	I would like to present the poster: TITLE: Search for 5.5 MeV solar axions with Borexino detector AUTHORs: A. Derbin and V.
			npi.spb.ru	Nuclear Physics	5.5 MeV	Muratova on behalf of the Borexino collaboration ABSTRACT: A search for 5.5-MeV solar axions emitted in the \$p + d
				Institute	solar axions	\rightarrow \rm{^3He} + \gamma (5.5\rm{MeV})\$ reaction have been performed with Borexino detector. The Compton
					with	conversion of axion to a photon \$A + e \rightarrow e + \gamma\$, axioelectric effect \$A + e + Z \rightarrow e + Z\$, decay of
					Borexino	axion in two photons \$A \rightarrow 2\gamma\$ and Primakoff conversion on nuclei \$A + Z \rightarrow \gamma + Z\$ are
					detector	considered. The new constraints on constants of interaction of axion with electrons, photons and nucleons are obtained.
48	Payez	Alexandre	a.payez@ulg.	University of Liege	New	There are many puzzling astrophysical observations for which solutions involving nearly massless axion-like particles have
			ac.be		constraints	been proposed. Some constraints on the parameter space of these particles do exist in the literature. Here, we consider the
					on very light	polarisation coming from axion-photon mixing in our supercluster and show that polarimetry considerations applied to
					pseudoscalar	quasars lead to new constraints.
					S	
49	Povey	Rhys	rhys.povey@	University of	Experimental	Building on the design of our earlier prototype, the progress and latest findings of the microwave cavity experiment to search
			uwa.edu.au	Western Australia	search for	for hidden sector photons at UWA is reported. With a pair of isolated cavities the presence of hidden sector photons can be
					the hidden	inferred from any 'light shining through a wall' as the result of photon - hidden sector photon - photon oscillations. Using a
					sector	high Q superconducting Niobium emitter cavity and a moderate Q room temperature copper detector cavity, separated by
					photon at	ample shielding, the projected sensitivity to the kinetic mixing factor is chi ~ 10^(-10) near a hidden sector photon mass of 40
					UWA	micro electron volts. The development of a possible new method for microwave cavity hidden sector photon searches will also
						be discussed.
50	Redondo	Javier	redondo@m	MPI, Munich	Hunting for	to come.
			ppmu.mpg.d		meV axions	
51	Ringwald	Andreas	andreas.ring	DESY		
			wald@desy.d			
52	Ruz Armendáriz	Jaime	Jaime.Ruz@c	CERN		
			ern.ch			
53	Rybka	Gray	grybka@uw.	University of	The Axion	The Axion Dark Matter Experiment (ADMX) has recently completed a year of data taking using a SQUID amplifier, placing new
			edu	Washington	Dark Matter	limits on KSVZ-coupled axion dark matter. Results from this run are presented and the next generation of ADMX, currently
					Experiment:	under construction, will be discussed.
					Results and	
					Future	
					Prospects	
54	Sadoulet	Bernard	sadoulet@be	University of	Recent	I will present the recent results from the Cryogenic Dark Matter Search, in particular about the possibility of a Weakly
			rkeley.edu	California,	results from	Interactive Massive Particle of 7 GeV/c2 mass. I will also describe our plans: our new payload at Soudan, the next stage with a
				Berkeley	CDMS and	100kg target mas at SNOLAB and a ton scale experiment in the future.
					plans	
55	Schmidt-	Philipp	philipp.schmi	Paul Scherrer	An improved	
	Wellenburg		dt-	Institut	search of the	
56	Schumann	Marc	marc.schuma	University of		
			nn@physik.u	Zurich		

57	Schwarz	Matthias	mschwarz@h	Hamburger	SHIPS - Solar	The main target of the Solar Hidden Photon Search (SHIPS) is to detect the solar emission of a new species of particles, so
			s.uni-	Sternwarte	Hidden	called Hidden Photons (HPs), also known as paraphotons. Photons and HPs convert into each other as they propagate in the
			hamburg.de	(Universität	Photon	same fashion that neutrinos oscillate among different flavors, or kaons among different CP eigenstates. A small amount of
				Hamburg)	Search	solar HPs can be efficiently converted into photons in a long and straight vacuum pipe. The Sun could then be observed
						continuously in the 'light' of HPs with a SHIPS helioscope. These adapted astronomical telescopes employ imaging optics and
						low-flux detectors in a vacuum chamber to achieve high sensitivity, contrast and spatial resolution.
58	Semenov	Dmitry	dmsemenov	PNPI	Search for	A search for resonant absorbtion of 14.4 keV solar axions by \$^{57}\$Fe target was performed. The Si(Li) detector placed inside
			@pnpi.spb.ru		solar axions	the low-background setup was used to detect the \$\gamma\$-quanta appearing in the deexcitation of 14.4 keV nuclear level:
					using	\$A+\rm{^{57}Fe} \to \rm{^{57}Fe^{*}} \to \rm{^{57}Fe} + \gamma\$. The new upper limit for the hadronic axion mass have
					resonant	been obtained: \$m_{A} \leq 151\$ eV (90% C.L.) (\$\$\$=0.5, \$z\$=0.56).
					absorption	
					by 169Tm	
					nuclei.	
59	Semertzidis	Yannis	yannis@bnl.g	Brookhaven	Review of	Electric dipole moment experiments are already constraining the CP-violating phases of speculative models, like SUSY. The
			ov	National	EDM	next generation experiments of the neutron, proton, deuteron, electron, mercury, xenon, etc. will either discover a non-zero
				Laboratory	experiments	EDM value by the end of the decade or will constrain the available parameter space by two to three orders of magnitude,
						essentially eliminating the electroweak baryogenesis scenario.
60	Sikivie	Pierre	sikivie@phys.	University of	Bose-Einstein	The axion provides a solution to the strong CP problem and is a cold dark matter candidate. I'll briefly review the limits on the
			ufl.edu	Florida	Condensatio	axion from particle physics, stellar evolution and cosmology. The various constraints suggest that the axion mass is in the
					n of Dark	micro-eV to milli-eV range. In this window, axions contribute significantly to the energy density of the universe in the form of
					Matter	cold dark matter. It was recently found that dark matter axions thermalize and form a Bose-Einstein condensate (BEC). As a
					Axions	result, it may be possible to distinguish axions from other forms of dark matter, such as weakly interacting massive particles
						(WIMPS), on observational grounds. Axions accreting onto a galactic halo fail in with net overall rotation because almost all
						go to the lowest energy available state for given angular momentum. In contrast, wilvip's accrete onto galactic halos with an
						irrotational velocity field. The inner caustics are different in the two cases. Till argue that the dark matter is axions because
						there is observational evidence for the type of inner caustic produced by, and only by, an axion BEC.
61	Stoinkamp	Olaf	alafa@abycik	Dhysik Institut		The LHCh experiment at CERN's Large Hadron Collider is looking for signatures of New Devsies beyond the Standard Model
01	Stellikamp	Olai			Derformance	through precision measurements of processes involving R mesons and other hadrons containing h or c quarks. Of particular
			.uzn.cn	Zuorich	Performance,	interact are observables that are suppressed in the Standard Model and exhibit high sensitivity to New Physics through
				Zuench	Prospects	possible contributions from new beaux particles in loop diagrams. By searching for New Physics indirectly via the effect of
					FIOSPECIS	virtual particles in internal loops. LHCb will extend the discovery potential to masses far in excess of those accessible in direct
						searches at the LHC. LHCh has seen a rapid and successful startup during the first physics rup of the LHC in 2010. About 27/ph
						of nn collisions at 7 TeV have been collected in 2010. Based on this data set preliminary results for several key analyses have
						been presented at conferences. Some of these results are already competitive with existing measurements and have been
						published or are being prepared for publication. An additional 80/ph of data have already been collected during the first four
						weeks of LHC physics operation in 2011. A total 1/fh are expected to be accumulated by the end of 2011. With this data
						sample. I HCb will be able to perform sensitive searches for New Physics in many analyses. In my talk, I will give a brief
						overview of the LHCb detector performance and operational experience, present highlights from the analysis of the 2010 data
						and discuss the discovery potential for New Physics in some of the key channels.
						and discuss the discovery potential for heavy mysics in some of the Key chambers.

62	Strauss	Raimund	raimund.stra	Physik Department	Direct Dark	CRESST (Cryogenic Rare Event Search with Superconducting Thermometers) is an experiment aimed at the direct detection of
			uss@ph.tum.	E15, TU München	Matter	Dark Matter. A well motivated candidate to account for Dark Matter are WIMPs (Weakly Interacting Massive Particles). The
			de	,	Search with	expected WIMP signature consists in a nuclear recoil of a few keV measured in low-temperature CaWO4 detectors equipped
			• -		CRESST II	with superconducting transition sensors operated at a few mK. CRESST has presently taken more than 700 kilogram-days of
						Dark Matter data (2009-2011), which are presently under evaluation. A preliminary analysis of this data yields an excess of
						oxygen recoil events, which is presently difficult to explain with neutrons or alpha, beta and gamma background alone. If
						conventional background contributions can be ruled out, part of the signal could also be interpreted as a Dark Matter
						signature of low-mass WIMPs.
63	Sulc	Miroslav	miroslav.sulc	Technical	1	
			@tul.cz	University of		
64	Suzuki	Yoichiro	suzuki@suke	Kamioka		
			tto.icrr.u-	Observatory, ICRR,		
65	Tanner	David	tanner@phys	University of	The ADMX	The Axion Dark Matter eXperiment (ADMX) recently completed a search for halo axions using a superconducting (SQUID) first-
			.ufl.edu	Florida	Phase I axion	stage amplifier. This experiment excludes KSVZ dark-matter axionswith masses between 3.30 microeV and 3.53 microeV. A
					search	high-resolution search sets a slightly better limit on unvirialized flows. The experiment also searched for chameleons and
						hidden sector photons.
66	Touramanis	Christos	c.touramanis	University of	Neutrino	Neutrino oscillations is a very active field with a number of experiments from Europe, USA, and Asia presenting results or
			@liverpool.a	Liverpool	oscillations -	starting up, and more in the preparation or proposal stage. This talk will give an overview of where we stand and what are the
			c.uk		experimental	main questions and projects coming up to provide answers.
					review and	
					prospects	
67	Troitsky	Sergey	st@ms2.inr.a	Institute for	talk TBA	
			c.ru	Nuclear Research		
68	Unzhakov	Evgeniy	unzhakov@p	PNPI	Search for	The search for resonant absorption of the Primakoff solar axions by \$^{169}\$Tm nuclei have been performed. Such an
			npi.spb.ru		solar axions	absorption should lead to the excitation of low-lying nuclear energy level: \$A+^{169}\$Tm \$\to ^{169}\$Tm\$^*\$ \$\to
					using	^{169}\$Tm\$ + \gamma\$ (8.41 keV). The Si(Li) detector and \$^{169}\$Tm target placed inside the low-background setup were
					resonant	used for that purpose. As a result, a new restriction on the axion-photon coupling and axion mass was obtained:
					absorption	\$g_{A\gamma}({GeV}^{-1})\cdot m_A(eV)\leq1.36\cdot10^{-5}\$ (90% c.l.). In model of hadronic axion this restriction
					by 169Tm	corresponds to the upper limit on axion mass - \$m_A\leq\$ 191 eV for 90% c.l.
					nuclei.	
69	van der Graaf	Harry	vdgraaf@nik	Nikhef	GridPix TPCs	With the GridPix detecor, the position of indiviual primary electrons, created in an interaction between a fast charged particle
			hef.nl		and their	and the gas in the drift gap, can be measured in 3D with good position and time resolution. With a thin drift gap of only 1 mm,
					application in	this 'Gossip' detector could replace Si as tracking detector: per layer it measures a track segment (vector) instead of a space
					Dark Matter	point, and it is more radiation hard. The ATLAS collaboration has approved GridPix/Gossip as R&D project for the ATLAS
					and Double	Upgrade. There is interest to apply a GridPix TPC as LVL 1 momentum trigger. New applications of GridPix TDCs are under
					Beta Decay	investigation such as (polarised) photon detector, and WIMP detection in liquid Xe or ar experiments, and in v-less double
					Experiments	beta decay experiments. The production of InGrids by industry is ongoing: low-cost GridPixes based on the TimePix pixel chip
						are expected to be available soon.

70	von Seggern	Eike	jvonsegg@ce	DESY	Status of the	The light-shining-through-a-wall (LSW) experiment ALPS at DESY gives the current best lab-based bounds for WISP couplings
			rn.ch		ALPS-II	and masses. Based on this success, preparations for ALPS-II have started. The aim is to increase the sensitivity by five orders of
					experiment	magnitude in order to probe parameter regions with astrophysical hints from white dwarf energy loss and the TeV
					at DESY	transparency of blazar blobs and achieve a sensitivity similar to indirect WISP searches, like CAST. To reach this sensitivity, the
						laser power in the WISP-production region will be increased and a second optical cavity in the regeneration region will be
						constructed. Additionally, we will make use of a longer magnet string and develope a very low-noise transition-edge photo-
						detector. In a pre-experiment, it will be possible to rule out the hidden-photon interpretation of the WMAP7 excess in sterile
						neutrinos. In this talk I will present these improvements and their impact on the sensitivity.
- 4						
/1	Wester	William	wester@fnal.	Fermilab	Laser	After a brief summary of the completed experiments of GammeV and GammeV-CHASE where a search has been made for
/1	Wester	William	wester@fnal. gov	Fermilab	Laser Experiments	After a brief summary of the completed experiments of GammeV and GammeV-CHASE where a search has been made for axion-like and chameleon particles, a new effort called the Fermilab Holometer will be described. The first phase involves R&D
/1	Wester	William	wester@fnal. gov	Fermilab	Laser Experiments at Fermilab	After a brief summary of the completed experiments of GammeV and GammeV-CHASE where a search has been made for axion-like and chameleon particles, a new effort called the Fermilab Holometer will be described. The first phase involves R&D in setting up and operating a 40m long optical cavity that has relevance for a future resonant regeneration experiment. The
/1	Wester	William	wester@fnal. gov	Fermilab	Laser Experiments at Fermilab for WISPs	After a brief summary of the completed experiments of GammeV and GammeV-CHASE where a search has been made for axion-like and chameleon particles, a new effort called the Fermilab Holometer will be described. The first phase involves R&D in setting up and operating a 40m long optical cavity that has relevance for a future resonant regeneration experiment. The second phase involves building two interferometers to search for a possible new jitter of space-time itself that can be derived
/1	Wester	William	wester@fnal. gov	Fermilab	Laser Experiments at Fermilab for WISPs and Other	After a brief summary of the completed experiments of GammeV and GammeV-CHASE where a search has been made for axion-like and chameleon particles, a new effort called the Fermilab Holometer will be described. The first phase involves R&D in setting up and operating a 40m long optical cavity that has relevance for a future resonant regeneration experiment. The second phase involves building two interferometers to search for a possible new jitter of space-time itself that can be derived from the holographic principle.
/1	Wester	William	wester@fnal. gov	Fermilab	Laser Experiments at Fermilab for WISPs and Other Effects	After a brief summary of the completed experiments of GammeV and GammeV-CHASE where a search has been made for axion-like and chameleon particles, a new effort called the Fermilab Holometer will be described. The first phase involves R&D in setting up and operating a 40m long optical cavity that has relevance for a future resonant regeneration experiment. The second phase involves building two interferometers to search for a possible new jitter of space-time itself that can be derived from the holographic principle.
71	Vester	Konstantin	wester@fnal. gov zioutas@cer	Fermilab University of	Laser Experiments at Fermilab for WISPs and Other Effects TBC	After a brief summary of the completed experiments of GammeV and GammeV-CHASE where a search has been made for axion-like and chameleon particles, a new effort called the Fermilab Holometer will be described. The first phase involves R&D in setting up and operating a 40m long optical cavity that has relevance for a future resonant regeneration experiment. The second phase involves building two interferometers to search for a possible new jitter of space-time itself that can be derived from the holographic principle.